Цифро-аналоговые и аналогово-цифровые преобразователи



ЦАП служит для преобразования цифровой информации в аналоговую форму, т.е. выходной сигнал ЦАП в общепринятых единицах измерения тока или напряжения (мВ, В, мА) соответствует численному значению входной кодовой комбинации.

    Величина напряжения, соответствующая одной единице цифровой информации, называется шагом квантования Duкв. При подаче на вход ЦАП последовательной цифровой комбинации, меняющейся от 0 до N, на его выходе появится ступенчато-нарастающее напряжение (рис. 5.1). Высота каждой ступени соответствует одному шагу квантования Duкв.

    Если число входной кодовой комбинации соответствует N, то выходное напряжение Uвых ЦАП = ND´uкв. Таким образом можно вычислить значение выходного напряжения для любой входной кодовой комбинации. Так как Duкв  определяет минимальное значение выходного напряжения аналогового сигнала Uвых мин. = Duкв, при выборе его значения необходимо учитывать также шумовые факторы, погрешности усиления масштабирующих усилителей и компаратора.

    Основные параметры ЦАП

    1. Относительная разрешающая способность

dо = , здесь n- количество разрядов двоичного числа, подаваемого на вход ЦАП (n - соответствует числу разрядных входов ЦАП). Относительная разрешающая способность - это обратная величина от максимального числа уровней квантования.

    2. Абсолютная разрешающая способность

dа = Duкв,  где Uпш - напряжение полной шкалы, соответствующее опорному напряжению ЦАП. Это напряжение можно считать равным максимальному выходному напряжению; 2n - 1 = N - количество ступеней квантования.

    Численно абсолютная разрешающая способность равна шагу квантования Duкв.

    3. Абсолютная погрешность преобразования dпш показывает максимальное отклонение выходного напряжения Uвых в точке пересечения с идеальной характеристикой (прямой) на уровне напряжения полной шкалы. Абсолютная погрешность преобразования оценивается в процентах или же в единицах младшего значащего разряда (МР). При оценке значения абсолютной погрешности преобразования знак напряжения не учитывается.

    4. Нелинейность преобразования ЦАП dлн определяет максимальное отклонение реальной характеристики от идеальной и оценивается также в процентах или в единицах младшего значащего разряда.

  5. Дифференциальная нелинейность преобразования ЦАП dдф.лн численно равна максимальной разности двух соседних приращений (шагов квантования)

dдф.лн = Duкв 1 - Duкв2.

    Дифференциальная нелинейность оценивается в младших значащих разрядах и обычно не превышает нескольких единиц мр.

 Время установления выходного напряжения или тока tуст - интервал времени от подачи входного двоичного входного кода до вхождения выходного сигнала в заданные пределы.

 Максимальная частота преобразования fпр - наибольшая частота дискретизации, при которой параметры ЦАП соответствуют заданным значениям. Максимальная частота и время установления определяют быстродействие ЦАП.

    Виды ЦАП условно можно разделить на две группы: с резисторными матрицами, безматричные ЦАП. В интегральном исполнении применяются только ЦАП с прецизионными резисторными матрицами, формирующими выходные сигналы путем суммирования токов.

       ЦАП содержит элементы цифровой и аналоговой схемотехники. В качестве аналоговых элементов используются операционные усилители, аналоговые ключи (коммутаторы), резисторные матрицы и т.д.

Цифро-аналоговые преобразователи (далее — ЦАП) предназначены для преобразования цифровых сигналов в аналоговые и служат для сопряжения цифровых устройств формирования и обработки сигналов с аналоговыми потребителями информации. Они широко используются для управления аналоговыми устройствами при помощи ЭВМ. Принцип работы заключается в следующем. Для формирования аналогового сигнала на выходе, однозначно соответствующего цифровому коду входного сигнала, аналоговые ключи аi подключают к выходу ЦАП необходимое количество источников опорных сигналов bi, величина которых пропорциональна весу соответствующего двоичного разряда (рисунок 3.9.1). Наибольшее распространение в настоящее время получили микроэлектронные ЦАП. Их в общем случае можно разделить на преобразователи с прямым и промежуточным преобразованием. Преобразователи с прямым преобразованием обычно параллельного типа. В состав простейшей схемы ЦАП обычно входят источники опорного напряжения, резистивные или активные делители, аналоговые ключи. В качестве делителей чаще всего применяются матрицы R – 2R. Суммирование токов, образованных подключением соответствующих источников, производится операционным усилителем (далее — ОУ). Учитывая, что входное сопротивление и коэффициент усиления ОУ очень велики, можно заключить, что ток в его входной цепи практически не протекает, а все составляющие токов, протекающих через открытые ключи схемы, замыкаются на землю через резистор RОС, уравновешиваясь током IОС, текущим в цепи ОС. ОУ выполняет операцию суммирования токов, которые определяются значениями сопротивлений в тех разрядах ЦАП, где аi=1

Подключая несколько резисторов к суммирующему входу операционного усилителя, на выходе можно получить напряжение, пропорциональное взвешенной сумме входных напряжений. Способ масштабирующих резисторов становится неудобным, если преобразованию подвергаются много разрядов. Матрица R-2R, показанная на рисунке 3.9.3, приводит к изящному решению этой задачи. Здесь требуется только 2 значения резисторов, по которым матрица R-2R- формирует токи с двоичным масштабированием. Особенностью такой матрицы являться то, что ее входное сопротивление при любом положении ключей равно R, т.е. общий ток, втекающий в матрицу равен Распределение потенциалов в узлах матрицы не меняется при изменении положения ключей, поскольку входное сопротивление операционного усилителя фактически равно нулю, следовательно, потенциал на входе равен потенциалу «земли». Это обстоятельство приводит к последовательному уменьшению вдвое напряжения в узлах схемы по мере их удаления от источника опорного напряжения и такому же уменьшению токов, протекающих через ключи. Приведенная схема формирует напряжение от 0 В до 5 В с числом уровней дискретизации равным 16, при подаче на разряды матрицы входного двоичного 4-х разрядного числа с ТТЛ уровнями. Схемы ЦАП на основе резистивных матриц R-2R практичны, надежны, обладают высокой скоростью преобразования и легко реализуются в интегральном исполнении. Не требуется широкого диапазона номиналов и чрезвычайной точности при их подгонке. 


Дата добавления: 2018-05-12; просмотров: 337; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!