Отражение и преломление света
При падении параллельного пучка света на гладкую поверхность раздела двух прозрачных изотропных сред часть света отражается обратно, а другая часть проходит во вторую среду, при этом направление пучка света меняется; происходит преломление света.
Угол отражения равен углу падения, а угол преломления связан с углом падения соотношением: где п1 и п2 – показатели преломления сред, и – углы падения и преломления.
Показатели преломления обычных газов (при нормальных условиях) близки к 1, для стекла эта величина порядка от 1,4 до 1,7.
Эффекты отражения и преломления лежат в основе работы всех оптических систем, которые позволяют передавать световую энергию и изображения, фокусировать свет в мощные пучки, разлагать его в спектр.
Отраженный свет может нести значительную информацию о форме предмета (а также о структуре его поверхности) как в случае зеркального, так и диффузного отражения.
Несколько примеров применения отражения и преломления света:
- способ определения пайки выводов радиодеталей, например, резисторов, при котором производят погружение вывода в каплю расплавленного припоя и регистрируют интервал времени между соприкосновением вывода с каплей и замыканием капли над ним, с целью повышения точности измерения времени пайки, на поверхность капли припоя направляют луч света в форме узкой полосы и фиксируют интервал времени между началом отклонения отраженного от поверхности капли луча до его возвращения в исходное положение, используя фотоэлемент, соединенный со счетчиком времени;
|
|
- способ определения частоты обработки поверхности, заключающийся в том, что направляют световой поток на контролируемую поверхность и регистрируют световой поток, отраженный от нее, отличающийся тем, что с целью повышения точности измерения, поворачивают контролируемую поверхность вокруг оси, перпендикулярной плоскости падения светового потока, регистрируют угол наклона, при котором отраженный от него световой поток будет составлять заданную часть, например, половину от максимального, и по алгебраической разности определяют чистоту обработки поверхности. Процессы отражения и преломления связаны с внутренней структурой вещества; измерение показателя преломления - один из важнейших методов структурных исследований;
- способ исследования тепловых напряжений на прозрачных моделях путем просвечивания образца монохроматическим светом, отличающийся тем, что с целью определения полного теплового напряжения, вызываемого неоднородным нагревом, предварительно определяют градиент температур в исследуемом образце, измеряют соответствующий ему угол отклонения светового луча в данной точке, и по полученным данным судят о величине теплового напряжения;
|
|
- способ регулировки температуры размягчения донного продукта отпарного аппарата в зависимости от изменения режимного параметра в зоне питания аппарата, отличающийся тем, что с целью повышения качества регулировки, режимный параметр корректируют в зависимости от коэффициента преломления дистиллярного продукта, выводимого из аппарата. В общем случае, лучи отраженный и преломленный – это лучи поляризованного света. Степень поляризации зависит от угла падения. При определенном значении этого угла (угол Брюстера) отраженный свет полностью линейно поляризован перпендикулярно плоскости падения. При падении же под углом Брюстера света, уже поляризованного в плоскости падения, отражения вообще не происходит, не смотря на скачок показателя преломления;
- акустооптический дефлектор, содержащий акустооптический эффект и пьезопреобразователь, отличающийся тем, что с целью увеличения его разрешающей способности с одновременным уменьшением потерь света на отражение, входная поверхность акустооптического элемента выполнена по отношению к поверхности, на которой расположен пьезопреобразователь, под углом, равным сумме угла Брюстера и угла дифракции Брегга для данного материала, а выходная поверхность - под углом, равным разности между углом Брюстера и углом дифракции Брегга. При определенных условиях может наблюдаться полное внутреннее отражение света, при котором вся энергия световой волны, падающей на границу двух прозрачных сред со стороны среды, оптически более плотной, полностью отражается в эту среду. В частности это явление используется в призмах биноклей и перископов, но диапазон его применения в изобретательстве гораздо шире (1);
|
|
- устройство для измерения температуры, содержащее измерительный элемент, установленный в контролируемой среде, и источник белого света с диафрагмой, отличающийся тем, что с целью повышения точности измерения температуры и увеличения светосилы устройства, измерительный элемент выполнен в виде двух прозрачных прямоугольных призм, сложенных наклонными гранями, между которыми расположен слой прозрачного вещества с показателем преломления, зависящим от длины волны и температуры, причем источник света расположен относительно измерительного элемента так, что ось светового потока наклонена к плоскости входной грани призмы под предельным углом полного внутреннего отражения;
|
|
- устройство для активного контроля распыления жидкости, выполненное из источника света, воздействующего через собирательную линзу через фоторезистор, к которому подключен усилитель, отличающийся тем, что с целью увеличения надежности контроля, на пути света за линзой последователены оптический многогранник полного внутреннего отражения и охватывающая его изогнутая шторка, образующая с одной из граней клинообразное входное пространство;
- переменный цифровой элемент состоит из прямоугольной призмы, над гипотенузой грани которой располагаются несколько отражающих слоев. Луч света проходит через одну из катетных граней призмы и падает на ее гипотенузную грань под углом, который равен критическому углу или больше его. Обычно луч света будет испытывать полное внутреннее отражение в призме и выходить через другую ее катетную грань. Однако, если отражающий слой, расположенный над гипотенузой грани, имеет с ней оптический контакт, полное внутреннее отражение нарушается и луч проникает в этот отражающий слой. На гипотенузой грани могут располагаться несколько отражающих слоев. Явление полного внутреннего отражения, а также нарушение его, используется для определения количества отражающих слоев, пройденных лучом света прежде, чем испытать полное внутреннее отражение, пройти обратный путь через отражающие слои, призму и выйти через вторую ее катетную грань. Отражающие слои изготавливаются из стекла, либо представляют собой полости, заполненные жидкостью. Изгиб того или иного слоя и, следовательно, нарушение оптического контакта этого слоя со смежной поврхностью, может быть осуществлен с помощью пьезоэлектрического кристалла.
На основе явления полного внутреннего отражения созданы световоды, которые гораздо эффективнее обычных линзовых систем. Широкие одиночные светопроводы передают излучение; применение волоконной оптики – пучков очень тонких светопроводов – позволяет передавать также изображение в том числе и по непрямым путям, т.к. пучок тонких волокон может быть сильно изогнут без разрушения и потери прозрачности.
Поглощение и рассеяние
В предыдущем разделе явления рассматривались как предположение что среды оптически однородны и абсолютно прозрачны для света. В действительности дело обстоит иначе. Процесс прохождения света через вещество - это процесс поглощения атомами и молекулами энергии электромагнитной волны, которая идет на возбуждение колебания электронов и последующего переизлучения этой энергии. При этом, не вся энергия переизлучается, часть ее переходит в другие виды энергии например тепловую. Это приводит к поглощению света, которое зависит от длины волны света и имеет максимумы на частотах, соответствующих частотам собственных колебаний электронов в атомах, самих атомов и молекул. Естественно, поглощение зависит от толщины слоя поглощающего вещества.
Примеры применения поглощения и рассеяния света:
- толщину полимерной пленки измеряют, сравнивая потоки ИК-излучения: отражающего от поверхности и прошедшего сквозь пленку, ослабленного за счет поглощения в слое полимера;
- для определения влагосодержания предмета его облучают светом с длиной волны, лежащей в области поглощения воды, и измеряют сигнал ослабленного излучения;
- контролируют процесс сушки по ИК-поглощению паров растворителя;
- ослабление светового излучения при прохождении через среду объясняется также и рассеянием света. В случае наличия в среде оптических неоднородностей переизлучение энергии электромагнитной волны происходит не только в направлении проходящей волны (пропускание), но и в стороны. Эта часть излучения, наряду с дифрагированной, преломленной и отраженной на неоднородностях составляющими, и образует рассеянный свет. Рассеяние обладает дисперсией. В атмосфере, например, рассеиваются преимущественно голубые лучи; этим объясняется голубой цвет неба, в то время как свет, проходящий через атмосферу, обогащен красными составляющими – красный цвет зорь. При монохроматическом освещении даже в физически сильно неоднородной среде рассеяние не происходит при совпадении коэффициентов преломления компонентов среды. Выбрав компоненты с различными температурными коэффициентами пре, можно создать оптический термометр;
- устройство для измерения температуры, содержащее измерительный элемент, устанавливаемый на исследуемый материал, и источник белого света, отличающийся тем, что с целью расширения интервала измеряемых температур, измерительный элемент выполнен в виде прозрачной кюветы, заполненной смесью, оптически неоднородных веществ, соответствующих заданному интервалу температур, показатели, преломления которых зависят от длины волны и температурные коэффициенты показателей преломления отличаются знаком либо величиной. (Показатели преломления компонентов смеси совпадают для различных длин волн в зависимости от температуры. При этом кювета становится оптически однородной для света с данной длиной волны, который пройдя через кювету, сообщает ей определенный цвет, соответствующей определенной температуре. Другие же составляющие белого цвета рассеиваются на неоднородностях системы и через кювету не походят). Распределение интенсивности света, рассеянного средой по различным направлениям (индекатрисса рассеяния), может дать значительную информацию о микрофизических параметрах среды. Такого рода измерения находят применение в биологии, коллоидной и аналитической химии, а также в аэрозольной технике;
- определяют параметры капель жидкости, измеряя характеристики светового излучения, рассеянного на каплях.
Рассеяние наблюдается в чистых веществах. Оно объясняется возникновением оптической неоднородности, связанный с флуктуациями плотности, например, тепловыми. Рассеянный свет по некоторым направлениям частично поляризован.
В случае комбинационного рассеяния света (эффект Мандельштама-Ландсберга-Рамана) в спектре рассеянного излучения кроме линий, характеризующих падающий свет, имеются дополнительные линии (сателлиты), излучение которых является комбинацией частот падающего излучения и частот собственных тепловых колебаний молекул рассеивающей среды.
Эффект Мандельштама-Ландсберга-Рамана применяется для:
- контроля содержания загрязнений в большом объеме воздуха производится на основе анализа характеристического романовского излучения (сателлитов комбинационного рассеяния), возникающего при рассеянии лазерного излучения на атомах и молекулах загрязнений.
Эффект Рамана – комбинационное рассеяние света, рассеяние света веществом, сопровождающееся заметным изменением частоты рассеиваемого света. Открыт в 1828 г. индийским физиком Раманом на жидкостях и Лондсбергом, Мандельштамом на кристаллах. Если источник испускает линейчатый спектр, то при комбинационном рассеянии света в спектре рассеянного излучения обнаруживаются дополнительные линии, число и расположение которых тесно связано с молекулярным строением вещества.
Согласно квантовой теории, процесс комбинационного рассеяния света состоит из 2-х связанных между собой актов - поглощения первичного фотона с энергией hv и испускания фотона с энергией hv, происходящих в результате взаимодействия электронов молекулы с полем падающей световой волны. Молекула, находящаяся в невозбужденном состоянии, под действием кванта с энергией hv, испуская квант, переходит в состояние с колебательной энергией hvj Таким образом, процесс приводит к появлению линий с частотами v+Vj и v-Vj.
Интенсивность линий комбинационного рассеяния света мала и зависит от частоты возбуждающегося света.
Рис. 12.3. Схема образования стоксовых (V-V^H оптистоксовых (v+Vn)) линий при К.Р.С.
Дата добавления: 2018-05-09; просмотров: 379; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!