ЭЛЕКТРИЧЕСКИЕ РАЗРЯДЫ В ГАЗАХ



 

Эффект Пеннинга – снижение потенциала зажигания разряда в газе, обусловленное присутствием примеси другого газа, потенциал ионизации которого ниже энергии возбуждения метастабильного уровня основного газа. Эффект объяснил Ф. Пеннинг в 1928 г. В отсутствии примеси электроны, ускоренные в электрическом поле, отдают свою энергию атомам, переводя их в метастабильное состояние. Поэтому ионизация электронным ударом мала и напряжение зажигания оказывается высоким. При наличии примеси происходят столкновения возбужденных атомов основного газа, с атомами примеси, в результате чего последние ионизируются за счет энергии, освобождающейся при переходе метастабильных атомов в основное состояние. Появление такой дополнительной ионизации приводит к снижению потенциала ионизации среды и, значит, к снижению напряжения зажигания разряда [3].

 

Факторы, влияющие на газовый разряд

 

В обычных условиях любой газ, будь то воздух или пары серебра, является изолятором. Для того, чтобы под действием электрического поля возник ток, требуется каким-то способом ионизовать молекулы газа. Внешние проявления и характеристики разрядов в газе чрезвычайно разнообразны, что объясняется широким диапазоном параметров и элементарных процессов, определяющих прохождения тока через газ. К первым относятся состав и давление газа, геометрическая конфигурация разрядного пространства, частота внешнего электрического поля, сила тока и т.п., ко вторым – ионизация и возбуждение атомов и молекул газа, рекомендация удары второго рода, упругое рассеяние носителей заряда, различные виды эмиссии электронов. Такое многообразие управляемых факторов создает предпосылки для весьма широкого применения газовых разрядов.

Потенциалом ионизации называется энергия, необходимая для отрыва электрона от атома или иона. Для нейтронных невозбужденных атомов величина этой энергии изменяется от 4 до 24 (Не) электрон-вольт. В случае молекул и радикалов энергия разрывов связей лежит в пределах 0,06+ 11,1 э.в.

Фотоионизация атомов. Атомы могут ионизироваться при поглощении квантов света, энергия которых равна потенциалу ионизации атома или превосходит ее.

Поверхностная ионизация. Адсорбированный атом может покинуть нагретую поверхность, как в атомном, так и в ионизованном состоянии. Для ионизации необходимо, чтобы работа выхода поверхности была больше энергии ионизации уровня валентного электрона адсорбированного атома (щелочные металлы на вольфраме и платине).

Процессы ионизации используются не только для возбуждения различных видов газовых разрядов, но и для интенсификации различных химических реакций и для управления потоками газов с помощью электрических магнитных полей.

Примеры применения процессов ионизации:

- способ электродуговой сварки с непрерывной и импульсной моделей энергии, отличающийся тем, что с целью повышения точности выполнения сварного шва и облегчения зажигания дуги, ионизирующие дуговой промежуток;

- способ нагрева стали в окислительной атмосфере, отличающийся тем, что с целью снижения обезуглеродивания, в процессе нагрева осуществляют ионизированные атмосферы;

- способ измерения малых потоков газа, выпускаемых в вакуумный объем, отличающийся тем, что с целью повышения точности измерения, газ перед запуском ионизируют и формируют в однородный полный пучок, а затем вводят ионный пучок в вакуумный объем, где его нейтрализуют на металлической мишени, и по току ионного пучка судят о величине газового потока.

 

Высокочастотный тороидальный разряд

 

Обычно газовый разряд происходит между проводящими электродами, создающими граничную конфигурацию электрического поля и играющими значительную роль в качестве источников и стоков заряженных частиц. Однако наличие электродов необязательно (высокочастотный тороидальный заряд).

 

Роль среды и электродов

 

При достаточно больших давлениях и длинах разрядного промежутка основную роль в возникновении и протекании разряда играет газовая среда. Поддержание разрядного тока определяется поддерживанием равновесной ионизации газа, происходящий при малых токах за счет гауноендовских процессов каскадной ионизации, а при больших токах за счет термической ионизации.

При уменьшении давления газа и длины разрядного промежутка все большую роль играют процессы на электродах; при P 0,02+0,4 мм.рт.ст/см процессы на электродах становятся определяющими.

 

Тлеющий разряд

 

При малых разрядных токах между холодными электродами и достаточно однородном поле основным типом разряда является тлеющий разряд, характеризующийся значительным (50 .. 400 В) катодным падением потенциала. Катод в этом типе разряда испускает электроны под действием заряженных частиц и световых квантов, а тепловые явления не играют роли в поддерживании разряда.

Тлеющий разряд нашёл применение в устройстве, предназначенном для считывания информации с перфорированного носителя, используются лампы тлеющего разряда, имеющие невысокую стоимость, и, кроме того, обладающие высокой надежностью. Освещение ламп через перфорации носителя информации источником пульсирующего света вызывает зажигание некоторых из них, продолжающиеся и после исчезновения светового импульса. Таким образом, лампы тлеющего разряда обеспечивают хранение информации и не требуют дополнительного запоминающего устройства.

 

Коронный разряд

 

Примесь молекулярных газов в разрядном промежутке при коронном разряде приведет к образованию страт, т.е. расположенных поперек градиента электрического поля темных и светлых полос.

Тлеющий разряд в сильно неоднородном электрическом поле и значительном (P 100 мм.рт.ст.) давлении называют коронным. Ток коронного разряда имеет характер импульсов, вызываемых электронными лавинами. Частота появления импульсов 10-100 кГц.

 

Дуговой разряд

 

Дуговой разряд наблюдается при силе тока не менее нескольких ампер. Для этого типа разряда характерно малое (до 10 В) катодное падение потенциала и высокая плотность тока. Для дугового разряда существенна высокая электронная эмиссия катода и термическая ионизация в плазменном столбе. Спектр дуги обычно содержит линии материала катода.

Способ выпрямления переменного тока с помощью газоразрядного промежутка с полым катодом при низком давлении газа, соответствующим области левой ветви кривой Пашена, отличающийся тем, что с целью повышения выпрямленного тока и уменьшения падения напряжения в течении проводящей части периода, при положительном потенциале на аноде систему "анод-полый катод" переводить в режим дугового разряда.

 

Искровой разряд

 

Искровой разряд начинается с образования стример самораспространяющихся электронных лавин, образующих проводящий канал между электродами. Вторая стадия искрового разряда главный разряд – происходит вдоль канала, образованного стримером, а по своим характеристикам близка к дуговому разряду, ограниченному во времени емкостью электродов и недостаточностью питания. При давлении 1 атм., материал и состояние электродов не оказывает влияния на пробивное напряжение в этом виде разряда.

Расстояние между сферическими электродами, соответствующее возникновению искрового пробоя весьма часто служит для измерения высокого напряжения.

Способ определения размера макрочастиц с подачей их на заряженную поверхность, отличающийся тем, что с целью повышения точности измерения, определяют интенсивность световой вспышки, сопровождающей электрический пробой между заряженной поверхностью и приближающейся к ней частицей и по интенсивности судят о размере частицы.

 

Факельный разряд

 

Факельный разряд – особый вид высокочастотного одноэлектродного разряда. При давлениях, близких к атмосферному или выше его, факельный разряд имеет форму пламени свечи. Этот вид разряда может существовать при частотах 10 МГц, при достаточной мощности источника.

10.9. "Стекание" зарядов с острия

 

При изучении заряженного острия наблюдается интересный эффект – так называемое стекание зарядов с острия. В действительности никакого стекания нет. Механизм этого явления следующий: имеющиеся в воздухе в небольшом количестве свободные заряды в близи острия разгоняются и, ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов создает впечатление стекания зарядов. При этом острие разряжается, и одновременно получает импульс, направленный против острия.

Несколько примеров на применение коронного разряда:

- устройство для кондиционирования воздуха, содержащее корпус с поддоном и патрубками для подвода и отвода воздуха и размещенный в корпусе воздуховоздушный теплообменник с каналами орошаемыми со стороны одного из потоков, отличающийся тем, что с целью повышения степени охлаждения воздуха путем интенсификации испарения коронирующие воды, по оси орошаемых каналов теплообменника установлены электроды, прикрепленные к имеющему заземление корпусу с помощью изоляторов и подключенные к отрицательному полюсу источника напряжения;

- измерение диаметра проволоки тоньше пятидесяти микрон с помощью коронного разряда. Как известно, коронный разряд в виде светящегося кольца возникает вокруг проводника, если к проводнику приложить высокое напряжение. При определении сечения проводника коронный разряд будет иметь вполне определенные характеристики. Стоить изменить сечение, тотчас изменяется и характеристика коронного разряда.


ЭЛЕКТРОКИНЕТИЧЕСКИЕ ЯВЛЕНИЯ

 

Эффекты, связанные с относительным движением двух фаз под действием электрического поля, а также возникновение разности потенциалов при относительном смещении двух фаз, на границе между которыми существует двойной электрический слой, называется электрокинетическими явлениями.

Электроосмос (электроэндоосмос) – движение жидкостей или газов через капилляры, твердые пористые диафрагмы и мембраны, а также через слои очень мелких частиц под действием внешнего электрического поля. Электроосмос применяется при очистке коллоидных растворов от примесей, для очистки глицерина, сахарных сиропов, желатина, воды, при дублении кож, а также при окраске некоторых материалов.

Эффект обратный электроосмосу – возникновение разности потенциалов между концами капилляра, а также между противоположными поверхностными диафрагмами мембраны для другой пористой среды при продавлении через них жидкости (потенциал течения).

Электрофорез (катофорез) – движение под действием внешнего электрического поля твердых частиц, пузырьков газа, капель жидкости, а также коллоидных частиц, находящихся во взвешенном состоянии в жидкой или газообразной среде. Электрофорез применяют при определении взвешенных в жидкости мелких частиц, не поддающихся фильтрованию или сжиманию, для обезвоживания торфа, очистки глины или каолина, обезвоживания красок, осаждение каучука из латекса, разделения масляных эмульсий, осаждения дымов и туманов. Эффект обратный электрофорезу – возникновение разности потенциалов и жидкости в результате движения частиц, вызванного силами не электрического характера, например, при оседании частиц в поле тяжести, при движении в ультразвуковом или центробежном поле (седментационный потенциал или потенциал оседания). Электрокапиллярные явления – явления связанные с зависимостью величины поверхностного натяжения на границе раздела электрод-раствор от потенциала электрода.


СВЕТ И ВЕЩЕСТВО

 

Эффект Садовского – возникновение механического вращающего момента у тела, облучаемого эллиптически поляризованным светом. Когда на кристаллическую пластинку в V4 длины волны падает свет, поляризованный по кругу, появляется вращающий момент, стремящийся повернуть пластинку в сторону вращения электромагнитного вектора волны. Величина вращательного момента, возникающего под действием света, прямо пропорциональна длине волны излучения и плотности электромагнитной энергии в падающем пучке. Эффект очень мал, но наблюдается как для видимого света, так и для сантиметровых волн [3].

Эффект Шпольского – возникновение квазилинейчатых спектров сложных органических соединений в специально подобранных растворах при низких температурах. Впервые явление наблюдали Э. В. Шпольский и его сотрудники в 1952 г. Растворитель должен быть химически нейтральным по отношению к внедренным молекулам, быть оптически прозрачным в область поглощения и испускания внедренных молекул (жидкий парафин). Исследуемое вещество растворяют в нем в малых концентрациях, затем раствор охлаждают ниже точки кристаллизации растворителя. Спектры испускания и поглощения этого состава состоит из серии узких спектральных линий, напоминают атомные спектры.

Применение: спектральный анализ смесей, изучение процессов фотохимии органических соединений и др. [3].

Эффект Бурштейна-Мосса – сдвиг края области собственного поглощения света полупроводником в сторону высоких частот при увеличении концентрации электронов проводимости. Ток в кристалле InSb с собственной проводимостью край поглощения соответствует (при Т=300 К) длине волны  λкр = 7,2 мкм; после легирования образца донорами до концентрации 5·10-18 см, λкр = 3,2 мкм. Эффект установлен американцем Э. Бурштейном и англичанином Т. Моссом в 1954 г. [3].

Электрогирация – возникновение или изменение оптической активности в кристаллах под действием электрического поля. Например, в центросимметричном кристалле РЬМоС>4 при напряженности поля 10 кВ возникает оптическая активность, дающая удельное вращение плоскости поляризации света ~5° на длине волны Аг=400нм. В кристаллах кварца обнаружена квадратичная зависимость электрогирации от напряженности поля. В некоторых сегнетоэлектриках (например, 5PbO3GeO2) от напряженности поля зависит знак оптической активностью в области температур фазового перехода электрогирация в сегнетоэлектриках обычно выше, чем в диэлектриках [3].

Эффект Франца – сдвиг границы (края) собственного поглощения света в полупроводнике в сторону меньших частот в присутствии внешнего электрического поля. Экспериментально был открыт в 1960 г. в отсутствии электрического поля краю соответствует частота света , где εg – ширина запрещенной зоны. В электрическом поле край поглощения размывается и становится возможным поглощение света с частотой . Одновременно с коэффициентом поглощения меняется и показатель преломления.

Применение: модуляция оптического излучения [3].

Эффект Штарка – расщепление спектральных линий атомов, молекул и др. квантовых систем в электрическом поле. Открыт в 1913 г. немецким физиком И. Штарком, является результатом сдвига и расщепления на подуровни уровней энергии под действием электрического поля Е. Различают линейный эффект Штарка; при нем получается симметричная относительно первичной линии картина расщепления. Линейный эффект характерен для атомов в не слишком сильных полях и составляет тысячи доли эВ. Линейный эффект наблюдается также для водородоподобных атомов.

Для многоэлектронных атомов типичен квадратичный эффект Штарка. Данный эффект наблюдается и в переменном электрическом поле.

 

 

Рис. 12.1. Зависимость расщепления электрических уровней энергии Ав от напряженности электрического поля Е при линейном (а) и квадратичном (б) эффект Штарка

 

Применение: с устройствах микроволновой спектроскопии, в частотных модуляторах лазерного излучения [3].

Эффект Хапле – один из эффектов магнитооптики, состоящий в изменении диаграммы направленности и в уменьшении степени поляризации света резонансной частоты, рассеянного атомами, находящимися в слабом внешнем магнитном поле. Характер поляризации рассеянного света существенным образом зависит от величины и направления поля и направления наблюдения. В сильных магнитных полях эта зависимость исчезает. Эффект открыл немецкий физик В. Хапле в 1924 г.

Применение: используют в спектроскопии как метод измерения характеристик атомных уровней, например среднее время жизни уровня. Нашел для измерения сверхслабых магнитных полей [3].

Плеохроизм – изменение окраски вещества в проходящем свете от направления распространения и поляризации этого света. Чаще всего плеохроизм наблюдается в кристаллах. У одноосных кристаллов различают 2 «главные» окраски - при наблюдении вдоль оптической оси и перпендикулярно к ней; у двуосных кристаллов - 3 основные окраски - при наблюдении по 3-м направлениям, которые обычно совпадают с главными направлениями кристалла. По другим направления кристалл виден окрашенным в иные, промежуточные цвета.

Сильным плеохроизмом отличаются, например, турмалин и ацетат меди.

Применение: использование поляроидов (поляризационных светофильтров), частично или полностью поляризующие свет [3].

 


Дата добавления: 2018-05-09; просмотров: 582; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!