Аномалии свойств при фазовых переходах



 

Вблизи точек Кюри и Нееля у магнетиков наблюдается сильные аномалии в изменении различных свойств при изменении температуры. Для ферромагнитиков это – эффекты Гопкинса (возрастание магнитной восприимчивости вблизи точки Кюри и Баркгаузена) ступенчатый ход кривой намагниченности образца вблизи температуры Кюри при изменении температуры, упругих напряжений или внешнего магнитного поля.

Измерение максимальной дифференциальной магнитной проницаемости в ферромагнитных материалах, основанный на подсчете числа скачков Баркгаузена на восходящей ветви петли гистерезиса, с целью повышения точности и упрощения процесса измерения, уменьшают напряженность магнитного поля до величины, при которой число скачков Баркгаузена на нисходящей ветви петли гистерезиса станет равным половине общего числа скачков, при этом значении уменьшают напряженность магнитного поля на заданную величину и измеряют приращение индукции, по величине которой определяют максимальную дифференциальную магнитную проницаемость.

Кроме того, вблизи точки Кюри наблюдается ферромагнитная аномалия теплоемкости. Это дает возможность определять температуру Кюри и отсутствии магнитного поля.

Близкие эффекты наблюдаются и в антиферомагнитиках.


КОНТАКТНЫЕ, ТЕРМОЭЛЕКТРИЧЕСКИЕ И ЭМИССИОННЫЕ ЯВЛЕНИЯ

Контактная разность потенциалов

 

При контакте двух разных металлов один из них заряжается положительно, другой – отрицательно и между ними возникает разность потенциалов, называемая контактной. Она не очень мала – от десятых долей вольта до нескольких вольт и зависит только от химического состава и температуры контактирующих тел.

Это используется в способе контроля качества спекания агломерационной шихты путем изменения электрических характеристик спекаемого материала, отличающийся тем, что с целью повышения быстродействия непрерывности контроля качества, исключения влияния влажности исходной шихты, измеряют абсолютное значение электрического напряжения (ЭДС) между корпусом спекаемого агрегата и спеченным материалом и сравнивают эту величину с абсолютной величиной электрического напряжения (ЭДС), полученной при спекании материала с эталонными характеристиками.

А так же в способе определения усталостной прочности металла заключающийся в том, что образец из исследуемого металла нагружает его до разрушения и по числу циклов нагружения до разрушения судят об усталостной прочности металла, отличающееся с целью определения накопления усталостных повреждений в металле также в процессе его нагружения; измеряют величину работы выхода электрона с его поверхности например, методом контактной разности потенциалов, по которой судят о накоплении усталостных повреждений в металле.

Контактная разность потенциалов возникает не только между двумя металлами, но и между двумя полупроводниками полупроводником и металлом, двумя диэлектриками и т.д., причем соприкасающиеся тела могут не только твердыми, но и жидкими.

В основе трибоэлектричества (электризации тел при трении) также лежат контактные явления. Причем знаки зарядов, возникающих при трении двух тел, определяются их составом, плотностью, диэлектрической проницаемостью, состоянием поверхности и т.д. Трибоэлектричество возникает при просеивании порошков, разбрызгивании жидкостей, трении газов о поверхности тел и в других подобных случаях.

Применяется, например, в способе испытания органических жидкостей на электролизацию например нефтепродуктов, путем создания в них трением электростатического потенциала, отличающийся тем, что с целью одновременного определения скорости образования и скорости утечки возникающих зарядов, образование зарядов происходит путем вращения твердого тела, помещенного в исследуемую жидкость.

Другой интересный пример – электростатический коатулятор. Он предназначен для очистки воздуха в штреках. Вентилятор гонит по трубе запыленный воздух. Труба разделяется на два рукова один из фторопласта, другой - из оргстекла. Пылинки антрацита, трущиеся о стенки, заряжаются поразному: на фторопласте положительно, на оргстекле отрицательно. Потом рукава сходятся в общую камеру, где размноженные частицы антрацита притягива, сливаются и па.

При контакте металла с проводником наблюдается вентильный эффект. Контактный слой на границе металла и полупроводника обладает односторонней проводимостью, что используется, например, для выпрямления переменного тока в точечных диодах. При контакте проводников разных типов проводимости образуется р-п переход, также обладающий вентильными свойствами. Это явление используется во многих типах полупроводниковых приборов.

 

 

Термоэлектрические явления

 

В металлах полупроводниках процессы переноса зарядов (электрический ток) и энергии взаимосвязаны, так как осуществляются посредством перемещения подвижных носителей тока электронов проводимости и дырок. Эта взаимосвязь обуславливает ряд явлений (Зеебека, Пельтье, и Томсона), которые называют термоэлектрическими явлениями.

Эффект Зеебека состоит в том, что в замкнутой электрической цепи из разнородных металлов возникает термо-ЭДС, если места контактов поддерживаются при разных температурах. Эта ЭДС зависит только от температуры и от природы материалов, составляющих термоэлемент. Термо-ЭДС для пар металлов может достигать 50 мкВ/градус; в случае полупроводниковых материалов величина термо-ЭДС выше (10 во 2-ой + 10 в 3-ей мкВ/градус).

Эффект Зеебека применяется:

- в электротермическом способе дефектоскопии заключающимся в том, что контролируемую зону нагревают пропуская через нее в течение определенного времени постоянный по величине электрический ток, измеряют при помощи термопары-датчика температуры ее нагрева и судят о наличии дефекта по отклонению этой температуры от температуры нагрева бездефектной зоны сварного соединения, отличающийся тем , что с целью контроля зоны сварного соединения двух разных металлов, например, контактных узлов радиодеталей, в качестве термопары-датчика используют термопару, образованную соединенными металлами.

Для проверки качества сварного шва снимают распределение термоэлектрического потенциала поперек шва. Пики и впадины на кривых распределения говорят о неоднородности шва, а их величина - о степени неоднородности. Быстро и наглядно.

Если в разрыв одной из ветвей термоэлемента включить последовательно любое число проводников любого состава, все спаи (контакты) которых поддерживаются при одной и той же температуре, то термо-ЭДС в такой системе будет равна термо-ЭДС исходного элемента.

Термопара, содержащая защитный чехол, термоэлектроды с электрической изоляцией, рабочие концы которых снабжены токопроводящей перемычкой, образующей измерительный спай, отличающийся тем, что с целью увеличения срока службы термопары в условиях повышенной вибрации и больших скоростей нагрева, измерительный спай термопары выполнен в виде слоя порошкообразного металла, расположенного на дне защитного чехла.

При измерении физического состояния веществ, участвующих в контакте изменяется и величина термо-ЭДС

Это свойство применяется в способе распознавания систем с ограниченной и неограниченной взаимной растворимостью компонентов по температурной зависимости термо-ЭДС, отличающейся тем, что с целью повышения надежности распознавания измеряют термо-ЭДС контакта двух исследуемых образцов.

Между металлом, сжатым всестороннем давлением, и тем же металлом, находящемся при нормальном давлении тоже возникает термо-ЭДС

Например, для железа при температуре 100 °С и давлении 12 кбар, термо-ЭДС равна 12,8 мкВ .При насыщении металла или сплава в магнитном поле относитель тогоже вещества без магнитного поля возникает термо-ЭДС порядка 09мкВ/градус.

Эффект Зеебека – возникновение ЭДС в цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми имеют разную температуру. Открыт в 1821г. Если электрическая цепь состоит из 2-х различных проводников, она называется термоэлементом (термопарой). Величина термо-ЭДС зависит только от температуры горячего Т1и холодного Т2 контактов и от материала проводников.

Термо-ЭДС может возникнуть в цепи, состоящей и из одного материала, если его разные участки подвергать различным технологическим операциям. Она не меняется при последовательном включение в цепь любого количества других материалов, если появляющиеся при этом дополнительные места контактов поддерживаются при одной и той же температуре.

Термо-ЭДС металлов очень мала, сравнительно больше термо-ЭДС в полупроводниках и их сплавах (Pd + Ag). Причина подобных явлений – нарушение силового равновесия в потоке носителей тока.

Использование: в термоэлектрических измерительных приборах (термоэлектрических термометрах), представляющих сочетание термоэлектрического преобразователя с электроизмерительным механизмом. Применяется для измерения I и U при несинусоидальных токах и на повышенных частотах.

 

Термоэлектрический омметр:

1 - нагреватель; 2 - термопара; 3 - нагрузка;

М - измерительный механизм

 

Эффект Пельтье обратен эффекту Зеебека. При прохождении тока через спай различных металлов кроме джоулева тепла дополнительно выделяется или поглощается, в зависимости от направления тока, некоторое количество тепловых (спай сурьма-висмут при 20 °С – 10,7 мкал/Кулон). При этом количество теплоты пропорционально первой степени тока.

Несколько примеров применения Эффекта Платье:

- для увеличения отношение сигнал шум ФЭУ предлагается способ охлаждения фотокатодов термоэлектрическими элементами, расположенными внутри вакуумной оболочки ФЭУ;

- холодильник, устройства для отбора газа, в котором отвод конденсата составляет одно целое с холодильником. На внутренней стороне полого конуса закреплены холодные спаи элементов Пельтье и от него ответвляется трубопровод для отбора измерительного газа. Холодильник, отличается тем, что в качестве генератора тока, потребляемыми элементами Пельтье, предусмотрена батарея термоэлементов, горячие спаи которых находятся в канале дымовых газов, а холодные спаи – во внешнем пространстве.

Эффект Пельтье – выделение или поглощение теплоты при прохождение электрического тока I через контакты двух различных проводников. Выделение теплоты сменяется поглощением при изменение направления тока. Открыт французским физиком Ж. Пельтье в 1834 г. Объяснение эффекта: средняя энергия носителей зависит тока от их энергетического спектра, концентрации и механизма их рассеяния и по этому в различных проводниках различна. При переходе из одного проводника в другой электроны либо передают избыточную энергию атомам, либо пополняют недостаток энергии за их счет.

В первом случае вблизи контакта выделяется, а во втором поглощается теплота Пельтье. При переходе электронов из полупроводника в металле электроны отдают свою избыточную энергию. На контакте двух полупроводников (двух металлов) также выделяется (поглощается) теплота, т. к. средняя энергия носителей зарядов по обе стороны контакта различна.

Применение: эффект используется для охлаждения в холодильных установках, в некоторых электрических приборах [3].

Явлением Томсона называют выделение или поглощение теплоты, избыточной над джоулевой, при прохождении тока по неравномерно нагретому однородному проводнику или полупроводнику.

Эффект Томсона – выделение или поглощение теплоты в проводнике с током, вдоль которого имеется градиент температуры, происходящее помимо выделения джоулевой теплоты. Теплота Томсона пропорциональна силе тока, времени и перепаду температуры.

Если вдоль проводника, по которому протекает ток, существует градиент температуры, причем направление тока соответствует направлению движения электронов от горячего конца к холодному, то при переходе от более нагретого участка в более холодный электроны тормозятся и передают избыточную энергию окружающим атомам (выделение теплоты); при обратном направление тока электроны, ускоряются полем термоэдс и пополняют свою энергию за счет энергии окружающих атомов (поглощение теплоты) [3].

                                                               

Электронная эмиссия

 

Ноттингема эффект – выделение теплоты на катоде при автоэлектронной эмиссии и поглощение теплоты при термоавтоэлектронной эмиссии, обусловленной разностью между средней энергией электронов, подходящих к поверхности катода и покидающих его. При низкой температуре (при автоэлектронной эмиссии) распределение электронов по энергиям практически не отличается от распределения Ферми при абсолютном нуле. Поэтому сквозь потенциальный барьер в вакуум уходят электроны, энергия которых несколько ниже уровня Ферми. При этом происходит нагревание эмиттера за счет энергии электронов, приходящих из электрической цепи на освобождающиеся уровни. В случае термоавтоэлектронной эмиссии (при высокой температуре) электроны уходят с уровней, лежащих выше уровня Ферми. Заполнение этих уровней электронами, приходящими из цепи, приводит к охлаждению эмиттера. Открыт У. Б. Ноттингемом в 1941 г. [3].

Эффект Малтера – эмиссия электронов в вакуум из тонкого диэлектрического слоя на проводящей подложке при наличии сильного электрического поля в слое. Открыт американским радиоинженером Л. Малтером в 1936 г. в слое А12О3 + Cs2O на А1. эмиссионный ток быстро растет с ростом анодного напряжения. Эффект Малтера обусловлен наличием сильного электрического поля в слое, что приводит к автоэлектронной эмиссии из подложки в слой [3].

При контакте тел с вакуумом или газами наблюдается электронная эмиссия – выпускание электронов телами под влиянием внешних воздействий: нагревания (теплоэлектронная эмиссия) потока фотонов (фотоэмиссия), потока электронов (вторичная эмиссия), потока ионов, сильного электрического поля (автоэлектронная или холодная эмиссия), механических или других "портящих структуру" воздействий (автоэлектронная эмиссия).

Во всех видах эмиссий, кроме автоэлектронной, роль внешних воздействий сводится к увеличению энергии части электронов или отдельных электронов тела до значения, позволяющего им преодолеть потенциальный порог на границе тела с последующим выходом и вакуум или другую среду.

Эффект Малтера применяется:

- способ контроля глубины нарушенного поверхностного слоя полупроводниковых пластин, отличающихся тем, что с целью обеспечения возможности автоматизации и упрощения процесса контроля, пластину нагревают до температуры ,соответствующей максимуму экзоэлектронной эмиссии, которую контролируют одним из известных способов, а по положению пика эмиссии определяют глубину нарушенного слоя;

- электронная турбина, содержащая помещенные в вакуумный баллон катод и анод и размещенный между ними ротор с лопастями, отличающийся тем, что с целью увеличения крутящегося момента на валу турбины ее ротор выполнен в виде набора соосных цилиндров с лопастями, между цилиндрами роторов установлены неподвижные направляющие лопатки имеют покрытие, обеспечивающее вторичную электронную эмиссию, например, сурьмяно-цезиевое. В случае автоэлектронной эмиссии внешнее электрическое поле превращают потенциальный порог на границе тела в барьер конечной ширины и уменьшает его высоту относительно высоты первоначального порога, вследствие чего становиться возможным квантовомеханическое тунелирование электронов сквозь барьер. При этом эмиссия происходит без затраты энергии электрическим полем;

- способ измерения объемной концентрации углеводородов в вакуумных системах путем термического разложения углеводородов на нагретом острийном автокатоде и регистрации времени накопления пиролетического углерода до одной из эталонных концентраций, отличающихся тем, что с целью повышения точности измерения время накопления углерода регистрируют по изменению значения автоэлектронного тока. Наличие на поверхности металла тонких диэлектрических пленок в сильных полях не мешает походу электронов через потенциальный барьер. Это явление называется эффектом Молтера;

- электронно-лучевая запоминающая трубка с экранными сетками, отличающаяся тем, что с целью хранения записи неограниченно долгое время одна из экранных сеток, служащая потенциалоносителем, изготовлена из металлов, излучающих вторично-электронную эмиссию, покрытых пленкой диаэлектрика и обладающих эффектом.

Туннелирование электронов по потенциальным барьерам широко используется в специальных полупроводниковых приборах – туннельных диодах. На высоту туннельного барьера можно влиять не только электрическим полем, но и другими воздействиями.

Так же это используется в устройстве позволяющем обнаруживать магнитные домены с внутренним диаметром  не  более 1 мк, основано на определении изменения уровня Ферми исследуемого электрода по изменению высоты туннельного барьера и по его воздействию на величину сопротивления, туннельного перехода. Устройство применимо в магнитных долговременных и оперативных запоминающих устройствах.

А так же в устройстве для измерения контактного давления ленты на магнитную головку, содержащее упругие элементы и датчики, отличающиеся тем, что с целью осуществления одновременно интегрального и дискретного измерения указанного давления, устройство измерения выполнено в виде полуцилиндра, состоящего из упругих элементов, образующих на корпусе магнитной головки, при этом другой край полуцилиндра выполнен свободным, а под каждой полосой гребенки установлен датчик, например, с туннельным эффектом.

Туннельный эффект – преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия меньше высоты барьера. Вероятность прохождения сквозь барьер – главных фактор, определяющий физические характеристики туннельного эффекта. Эта вероятность тем больше, чем меньше масса частицы, чем уже потенциальный барьер и чем меньше энергии недостает частице, чтобы достичь высоты барьера. В случае одномерного потенциального барьера характеристикой служит коэффициент прозрачности барьера, равный отношению потока прошедших сквозь него частиц к подающему на барьер потоку. Аналог туннельного эффекта в волновой оптике: проникновение световой волны внутрь отражающего покрытия в условиях, когда с точки зрения геометрической оптики происходит полное внутреннее отражение [3].

Применение: в радиоэлементах, основанных на туннельном эффекте – туннельных диодах.

Термоэлектронная Эммисия – испускание электронов нагретыми телами в вакууме или других средах. Выйти из тела могут только те электроны, энергия которые больше энергии, покоящегося электрона вне тела. Число таких электронов при Т-300 К очень мало и экспоненциально возрастает с температурой. Поэтому ток термоэлектронной эмиссии заметен только для нагретых тел. При отсутствии "отсасывающего" электрического поля вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространственный заряд, ограничивающий ток термоэлектронной эмиссии.

Термоэлектронная эмиссия лежит в основе работы термоэлектрических катодов, применяющихся во многих электровакуумных и газоразрядных приборах.

Термоэлектронный преобразователь энергии – устройство преобразования тепловой энергии в электрическую на основе вышеописанного явления. Его действие основано на следующем процессе: с катода (поверхность горячего металла с большой работай выхода) "испаряются" электроны, которые пролетев межэлектродный промежуток, "конденсируются" на аноде (холодный метал); во внешней цепи течет ток КПД его превышает 20 % [3].

Ионно-электронная эмиссия – испускание электронов поверхностью твердого тела в вакуум при бомбардировке поверхности ионами; Коэффициент ионно-электронной эмиссии у равен отношению числа эмитированных электронов ni к числу падающих на поверхность ионов nj. Для медленных ионов у практически не зависит от энергии и массы mj, но зависит от их заряда (для однозарядных ионов у ≈ 0,2, для многозарядных у может превышать единицу).

Ионно-электронная эмиссия зависит также от энергии ионизации и возбуждения ионов от работы выхода вещества мишени. Когда скорость ионов достигает 6-7-106 см/с, характер ее резко изменяется.

Вначале у растет пропорционально ej, затем как (si)'2, при Vj = 108 - 109 см/с достигается максимум, затем идет спад.

Если к поверхности твердого тела подходит медленный ион, то электрон твердого тела может перейти к иону и нейтрализовать его. Такой переход сопровождается выделением энергии и часть электронов, получивших ее, может покинуть тело. При бомбардировке быстрыми ионами происходит интенсивный электрообмен, при котором электрон вылетает в вакуум [3].


Дата добавления: 2018-05-09; просмотров: 571; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!