Предмет микробиология и ее задачи.



   Микробиология изучает микроорганизмы, вызывающие инфекционные болезни сельскохозяйственных животных, промысловых и диких животных, рыб, пчел, а также возбудителей болезней, общих животным и человеку (зооантропонозы). Кроме того, изучает микроорганизмы, имеющие значение в животноводстве (микрофлору кормов, желудочно-кишечного тракта) и технологии пищевых продуктов животного происхождения.

Ветеринарная микробиология состоит из трех частей:

1. Общая микробиология  - изучает морфологию, физиологию, распространение и сохранение патогенных микробов во внешней среде, генетику микроорганизмов, патогенность и вирулентность, роль микробов в инфекционном процессе, распространение и локализацию их в животном организме и др.;

2. Иммунология – изучает закономерности проявления, механизмы и способы управления иммунитетом, антигены и антитела, иммунологическую толерантность, вопросы аллергии, специфической диагностики и др.;

3. Частная микробиология – изучает свойства возбудителей инфекционных болезней животных, вопросы патогенеза, лабораторной диагностики, специфическую профилактику и терапию.

 

Задачами микробиологии являются:

- изучение болезнетворных микробов – возбудителей инфекционных заболеваний животных и птиц (зоонозы), а также болезней, общих для человека и животных (зооантропонозы);

- изучение микроорганизмов, имеющих значение в животноводстве (микрофлора молока и мяса);

- разработка и совершенствование методов лабораторной диагностики инфекционных болезней;

- изыскание биопрепаратов (вакцин, иммунных сывороток, гаммаглобулинов) для специфической профилактики и лечения инфекционных заболеваний животных.

 

Методы лабораторной диагностики инфекционных заболеваний.

   В целях лабораторной диагностики инфекционных болезней применяют следующие методы исследования:

- микроскопический, позволяющий изучать морфологию микробов;

- микробиологический, с помощью которого получают чистую культуру и изучают биологические, культуральные, ферментативные и т.д. свойства микроорганизмов;

- биологический, дающий возможность определять болезнетворность и токсигенность культуры микроорганизмов путем заражения лабораторных животных;

- серологический, использующийся для обнаружения антител в сыворотках крови больных животных или для определения вида микроорганизмов с помощью различных специфических иммунных сывороток, содержащих антитела.

 

Лекція №2

Морфология и строение бактериальной клетки.

 

План лекции:

1. Размеры и единицы измерения бактерий.

2. Строение бактериальной клетки

а) характеристика клеточной стенки прокариот

б) нуклеоид, цитоплазма и др. основные структуры

в) временные структурные компоненты бактериальной клетки

3. Протопласты, сферопласты и L-формы бактерий.

 

Размеры и единицы измерения бактерий.

   Бактерии не видимы невооруженным глазом. Поэтому для их изучения используют световые, люминесцентные и электронные микроскопы. Клетки бактерий измеряются в микрометрах (1 мкм = 10-3 мм), элементы тонкого строения – в нанометрах (1 нм = 10-3 мкм). Предел разрешения светового микроскопа составляет 0,2 мкм, электронного – 0,15-0,3 нм. Размер бактерий в среднем 0,5-1,0 х 2,0-10,0 мкм, объем клеток около 1 мкм3, а масса приблизительно равна 4 х 10-3 г. среди бактерий могут быть гиганты, достигающие в длину 125 мкм и более. Например, размеры спирохет 0,2-0,75 х 5-500 мкм.

 

Строение бактериальной клетки.

   Клетка прокариотических организмов имеет сложное строго упорядоченное строение и обладает принципиальными особенностями ультраструктурной организации и химического состава.

   Структурные компоненты бактериальной клетки делят на основные и временные. Основными структурами являются: клеточная стенка, цитоплазматическая мембрана с ее производными, цитоплазма с рибосомами и различными включениями, нуклеоид. Временные – капсула, слизистый чехол, жгутики, ворсинки, эндоспоры.

а) Клеточная стенка – основная структурная единица оболочки микробной клетки, располагающаяся между цитоплазматической мембранной и капсулой; у безкапсульных бактерий – это внешняя оболочка клетки. Она обязательна для всех прокариот, за исключением микоплазм и L-форм бактерий.

 

Функции клеточной стенки:

1) определяет форму, так как является основной формообразующей структурой;

2) защищает бактерии от осмотического шока;

3) придает механическую прочность;

4) участвует в метаболизме;

5) содержит поверхностные антигены у патогенных видов;

6) несет на поверхности специфические рецепторы для фагов.

Основным компонентом клеточной стенки бактерий является пептидогликан, или муреин (от лат. murus – стенка), - опорный полимер, имеющий сетчатую структуру и образующий (жесткий) наружный каркас бактериальной клетки. Само название которого говорит о двойственной химической природе соединения. Гликаны представлены чередующимися остатками двух аминосахаридов – N – ацетилглюкозамина и N- ацетилмурамовой кислоты, а пептиды – цепью четырех лево- и правовращающихся аминокислот. Благодаря гликозидным связям гликаны собираются в полимер, а при помощи полипептидных связей они образуют между собой своеобразный молекулярный каркас. Как собран этот каркас, такую форму и имеет бактериальная клетка. Если каркасный слой будет иметь форму вытянутого мешка, бактерия приобретает палочковидную форму, если каркас сферический – шарообразную форму.

   Разный химический состав и строение стенок бактериальных клеток лежит в основе деления микробов на грамположительные и грамотрицательные организмы. В 1884 г. Х. Грам предложил метод окраски, который используется по настоящее время для дифференцирования бактерий. При окрашивании по Граму основной краситель генциановый фиолетовый в присутствии йода (р-р Люголя) с компонентами клетки (Мg соли РНК) образует комплекс, который при действии на него этиловым спиртом удерживает краситель у грамположительных и обесцвечивается у грамотрицательных микробов. В результате грам «+» микробы окрашиваются в цвет основного красителя (фиолетовый), а грам «-» - в красный (цвет дополнительного красителя – фуксина).

   Клеточная стенка грам «+» бактерий плотно прилегает к цитоплазматической мембране, массивна, ее толщина – 20-100 нм, при этом на долю пептидогликана приходится 30-70 % сухой массы клеточной стенки (толщиной в 40 слоев). В составе клеточной стенки в небольших количествах обнаруживаются полисахариды, белки и липиды. Характерная особенность – наличие тейхоевых кислот, которые связаны с пептидогликаном и участвуют в связывании ионов магния и их транспорте в клетку.

   Клеточная стенка грам «-» бактерий многослойна, толщина – 14-17 нм. Муреиновая сеть однослойная и составляет менее 10 % сухой массы клеточной стенки. Структурные микрофибриллы у грам «-» бактерий сшиты менее компактно, поры в их пептидогликановом слое значительно шире, чем в молекулярном каркасе грам «+» бактерий, что способствует быстрейшему вымыванию фиолетового комплекса генцианвиолета и йода. Тейхоевые кислоты у грам «-» бактерий не обнаружены. Наряду с пептидогликановым каркасом у грам «-» бактерий имеются большие количества липопротеинов, липополисахаридов и др. липидов, которые как бы наклеены снаружи на муреиновый каркас. Они связаны ковалентно и составляют до 80 % сухой массы клеточной стенки. Липополисахарид (ЛПС) у грам «-» бактерий получил название эндотоксина.

б) Нуклеоид–ядро у прокариот. Ядерный аппарат программирует обмен веществ, инфекционные свойства и изменчивость, ответственен за передачу биологических свойств у бактерий. Он состоит из одной замкнуто в кольцо двухспиральной нити ДНК длиной 1,1-1,6 нм, которую рассматривают как одиночную бактериальную хромосому. Нуклеоид упрокариот не ограничен от остальной части клетки мембраной – у него отсутствует ядерная оболочка. Кроме нуклеоида в клетках многих бактерий обнаружены внехромосомные генетические элементы – плазмиды, представленные небольшими кольцевыми молекулами ДНК, способными к автономной репликации. Их в бактериальной клетке обычно несколько, они детерминируют многие свойства микробов, связанных с размножением, устойчивостью к лекарственным веществам, патогенностью бактерий и др.

Цитоплазма бактерий – содержимое бактериальной клетки, ограниченное цитоплазматической мембраной. Состоит из цитозоля – гомогенной фракции, включающей растворимые компоненты РНК, вещества субстрата, ферменты, продукты метаболизма, и структурных элементов – рибосом, внутрицитоплазматических мембран, включений и нуклеоида.

Рибосомы – органоиды, осуществляющие биосинтез белка. Состоят из белка и РНК. Имеют константу седиментации 70 S (константы седиментации характеризуют скорость, с которой эти частицы осаждаются в центрифуге при определенных стандартных условиях).

   Выявляемые различного типа включения могут быть твердыми, жидкими и газообразными, с белковой мембраной или без нее и присутствовать непостоянно. Значительная часть их представляет собой питательные вещества и продукты клеточного метаболизма. К ним относят: полисахариды (гликоген и крахмалоподобное вещество – гранулеза), липиды (в виде гранул и капелек жира – пример, гранулы поли - b - оксимаслянной кислоты, воски у микобактерий), полифосфаты (гранулы волютина у спирилл и коринебактерий), отложение серы и др. К ним относят также газовые вакуоли, снижающие удельную массу клеток. В цитоплазме осуществляется обмен веществ клетки (метаболизм), т.е. ферментативные процессы, обеспечивающие ее питание и дыхания, синтез белка и других органических соединений – углеводов, липидов, кислот, а также токсинов и ферментов, способствующих проявлению патогенных свойств болезнетворных бактерий.

Цитоплазматическая мембрана – полунепроницаемая липопротеидная структура бактериальной клетки, отделяющая цитоплазму от клеточной стенки. Она служит осмотическим барьером клетки, контролирует поступление питательных веществ в клетку и выход продуктов метаболизма, в ней содержатся субстратспецифические ферменты – пермеазы, осуществляющие активный избирательный перенос органических и неорганических молекул, ответственна за синтез энергии т.к. в ней локализованы ферменты окислительного фосфорилирования и ферменты транспорта электронов. Цитоплазматическая мембрана образует многочисленные инвагиниты, формирующие внутрицитоплазматические мембранные структуры – мезосомы. Мезосомы являются центрами дыхательной активности бактерий, как и цитоплазматическая мембрана, поэтому их сравнивают с митохондриями; принимают участие в распределении генома между дочерними клетками при репликации ДНК. Их функция до конца не выяснена.

в) Капсула – слизистый слой, расположенный над клеточной бактерии. У одних микробов капсула представлена четко не оформленным рыхлым слоем вязкой слизи (лейконостока), у других – повторяющим очертания бактериальной клетки толстым (макрокапсула – B. аnthracis, Clperfr-s) или едва заметным под микроскопом тонким слоем (микрокапсула – у E. coli). Основные компоненты большинства капсул прокариот – гомо- или гетерополисахариды (энеробактерии и др.).у некоторых видов бацилл капсулы построены из полипептида. Капсула является местом локализации капсульных антигенов, определяющих вирулентность, антигенную специфичность и иммуногенность бактерий. Капсулы обеспечивают выживание бактерий, защищая их от механических повреждений, высыхания, заражения фагами, токсических веществ, а у патогенных форм – от действия защитных сил макроорганизма: инкапсулированные клетки плохо фагоцитируются. В ветеринарной микробиологии выявление капсулы используют в качестве дифференциального морфологического признака при исследовании на сибирскую язву, диплококковую септицемию и других инфекциях.

Жгутики бактерий – это цитоплазматические выросты нитевидной формы разной длины (1/20 диаметра клетки).Располагаются они либо по всей поверхности клетки (перитрихи), либо на ее конце по одному (монотрихи) или пучком (лофотрихи). Скорость движения бактерий в среднем составляет 20-60 мкм, иногда, как исключение, до 200 мкм в секунду. Жгутики не удается рассмотреть в препаратах, окрашенных обычными методами с применением анилиновых красок. Для этого необходимы специальные методы. О наличии жгутиков можно судить и по подвижности бактерий при исследовании их в живом состоянии (препарат «висячая капля» и др.). Выявление подвижных жгутиковых форм бактерий имеет значение для их идентификации при лабораторной диагностике инфекционных болезней.

Пили (фимбрии, ворсинки) – прямые, тонкие, полые белковые цилиндры толщиной 3025 нм и длиной до 12 мкм, отходящие от поверхности бактериальной клетки. Образованы белком – пилином. Количество может быть от 1-2, 50-400 и более. Существует два класса пилей: половые (секс-пили) и пили общего типа, которые чаще называют фимбриями. Половые пили возникают на поверхности бактерий в процессе конъюгации и выполняют функцию органелл, через которые происходит передача генетического материала (ДНК) от донора к реципиенту. Пили общего типа принимают участие в слипании бактерий в агломераты, прикреплении микробов к различным субстратам, в т.ч. к клеткам (адгезивная функция), в транспорте метаболитов, вызывают агглютинацию эритроцитов.

 Споры бактерий – округлые или продолговато-округлые образования размером 1-2 х 0,6-1 мкм. Основная функция спор – сохранение бактерий в неблагополучных условиях внешней среды. Переход бактерий к спорообразованию наблюдается при истощении питательного субстрата, изменения рН, повышения содержания кислорода и т.д. От вегетативных клеток споры отличаются репрессией генома, почти полным отсутствием обмена веществ (анабиозом), малым количеством свободной воды в цитоплазме, повышением в ней концентрации катионов кальция и появлением дипиколиновой кислоты в виде Са-хелата, с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость. Бактериальная спора формирует внутри материнской клетки и называется эндоспорой. Они могут располагаться центрально (B. anthracis), субтерминально (Cl. botulinum), терминально (Cl. tetani) – расшифровать.

   Споры бактерий устойчивы к действию высоких температур, химических соединений; могут длительное время (десятки, сотни лет) существовать в покоящемся состоянии. Споры плохо окрашиваются анилиновыми красками (только с применением спец. методов, например, по Циль-Нильсену – в красный цвет); в неокрашенном виде представляют собой бесцветные, светопреломляющие тельца.

   Способностью к спорообразованию обладают преимущественно палочковидные грам «+» бактерии родовBacillus и Clostridium, из шаровидных бактерий лишь единичные виды, например, Sporosarcinaureae. Как правило, внутри бактериальной клетки образуется только одна спора.


Дата добавления: 2018-05-09; просмотров: 300; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!