Общая методика формирования критериев



Суть предлагаемой методики формирования критериев заключается в реализации следующих пунктов.

1)Из выигрышей аij, i=1,…,m; j=1,…,n, игрока А составляем матрицу А, предполагая, что она удовлетворяет указанным выше условиям: m³2, n³2 и она не содержит доминируемых (в частности, дублируемых) строк.

Выигрыши аij игрока А, представленные в виде матрицы А, дают возможность лучшего обозрения результатов выбора стратегий Аi, i=1,…,m, игроком А при каждом состоянии природы Пj, j=1,…,n.

2) Фиксируем распределение удовлетворяющих условию (1) вероятностей qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…n, разумеется, если они известны. Таким образом, пункт 2 участвует в методике формирования критерия в случае принятия решения в условиях риска.

3) На основании пунктов 1 и 2 выбираем натуральное число l, 1£l£n, и определенным образом строим матрицу

В=

j Bi 1 2 l
B1 b11 b12 b1l
B2 b21 b22 b2l
Bm bm1 bm2 bml

размера m x l. Построение конкретной матрицы В порождается содержательной идеей формируемого критерия.

4) Выбираем l из чисел l1,…, ll, удовлетворяющих условиям

(2)

Назовем их коэффициентами формируемого критерия. Они призваны играть роль количественных оценок некоторых субъективных проявлений игрока А (лица, принимающего решение), а именно степени доверия к распределению вероятностей состояний природы и степени его пессимизма (оптимизма) при принятии решений.

5) Используя матрицу В и коэффициенты l1,…, ll, каждой стратегии Аi, i=1,…,m, игрока А поставим в соответствие число

(3)

которое назовем показателем эффективности Аi.

Таким образом, показатель эффективности Gi стратегии Аi, i=1,…,m, учитывает определенным образом выигрыши игрока А при этой стратегии, вероятности состояний природы (если они известны) и его субъективные проявления при выборе наиболее эффективной стратегии.

6) Определим цену игры G в чистых стратегиях как максимальный показатель эффективности стратегий Аi, i=1,…,m, т.е.

(4)

7) Определим оптимальную стратегию.

Оптимальной стратегией назовем стратегию Аk с максимальным показателем эффективности, другими словами, - стратегию, показатель эффективности Gk которой совпадает с ценой игры G:

Gk= G. (5)

Понятно, что такое определение оптимальной стратегии не влечет ее единственности.

Отметим, что по логике этого пункта игрок А, выбирая оптимальную стратегию, максимизирует показатель Gi (см. (5)). Это обстоятельство оправдывает то, что этот показатель мы назвали (в пункте 5) показателем эффективности.

 

 

55.Опишите минимаксный метод нахождения оптимальной стратегии для антагонистических игр

Антагонистические игры (матем.), понятие теории игр (см. Игр теория). А. и. — игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В — множества стратегий игроков, а Н (а, b) — вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b),а игрок II, выбирая b, минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми.

Основой целесообразного поведения игроков в А. и. считается принцип минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти «минимаксы» равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, — оптимальными стратегиями игроков. Если «минимаксы» различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные («чистые») стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. яв-ся матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Матричные игры, понятие игр теории. М. и. — игры, в которых участвуют два игрока (I и II) с противоположными интересами, причём каждый игрок имеет конечное число чистых стратегий. Если игрок I имеет m стратегий, а игрок II — n стратегий, то игра может быть задана (mn)-maтрицей А = ||aij||, где aij есть выигрыш игрока I, если он выберет стратегию i (i = -1, ..., m), а игрок II — стратегию j (j = 1, ..., n). Следуя общим принципам поведения в антагонистических играх (частным случаем которых яв-ся М. и.), игрок I стремится выбрать такую стратегию i0, на которой достигается ; игрок II стремится выбрать стратегию jo, на которой достигается ;

Если 1 = 2, то пара(i0, j0) составляет седловую точку игры, то есть выполняется двойное неравенство

; i = 1, …, m; j = 1, …, n.

Число называется значением игры; стратегии i0, j0 называются оптимальным и чистыми стратегиями игроков I и II соответственно. Если 1  2, то всегда 1 < 2; в этом случае в игре седловой точки нет, а оптимальные стратегии игроков следует искать среди их смешанных стратегий (то есть вероятностных распределений на множестве чистых стратегий). В этом случае игроки оперируют уже с математическими ожиданиями выигрышей.

Основная теорема теории М. и. (теорема Неймана о минимаксе) утверждает, что в любой М. и. существуют оптимальные смешанные стратегии х*, у*, на которых достигаемые «минимаксы» равны (общее их значение есть значение игры). Например, игра с матрицей имеет седловую точку при i0 = 2, j0 = 1, а значение игры равно 2; игра с матрицей не имеет седловой точки. Для неё оптимальные смешанные стратегии суть х* = (3/4, 1/4), y* = (1/2, 1/2); значение игры равно 1/2.

Для фактического нахождения оптимальных смешанных стратегий чаще всего используют возможность сведения М. и. к задачам линейного программирования. Можно использовать так называемый итеративный метод Брауна — Робинсон, состоящий в последовательном фиктивном «разыгрывании» данной игры с выбором игроками в каждой данной партии своих чистых стратегий, наилучших против накопленных к этому моменту стратегий оппонента. Игры, в которых один из игроков имеет только две стратегии, просто решить графически.

М. и. могут служить математическими моделями многих простейших конфликтных ситуаций из области экономики, математической статистики, военного дела, биологии. Нередко в качестве одного из игроков рассматривают «природу», под которой понимается вся совокупность внешних обстоятельств, неизвестных принимающему решения лицу (другому игроку).

57.Опишите метод Гермейера нахождения оптимальной стратегии

Критерий Гермейера [7].

1) Пусть матрица А яв-ся матрицей выигрышей игрока А.

2) Даны вероятности qi=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1).

Т.о. игрок А находится в ситуации принятия решений в условиях риска

3) Положим l=1 и

(15)

Таким образом, матрица В представляет собой вектор столбец

В=

размера m x 1.

4) Полагаем l1=1. Условие (2), очевидно, выполняется.

5) Показатель эффективности стратегии Аi по критерию Гермейера определяем по формуле (3) с учетом (15) и того, что l1=1:

(16)

Если игрок А придерживается стратегии Аi, то вероятность выигрыша aij при этой стратегии и при состоянии природы Пj равна, очевидно, вероятности qj этого состояния природы. Поэтому формула (16) показывает, что показатель эффективности стратегии Аi по критерию Гермейера есть минимальный выигрыш при этой стратегии с учетом его вероятности.

6) Цена игры по критерию Гермейера определяется по формуле (4):

7) Оптимальной стратегией по критерию Гермейера считается стратегия Аk с наибольшим показателем эффективности:

Gk= G

Заметим, что критерий Гермейера можно интерпретировать как критерий Вальда, применимый к игре с матрицей

Критерий Гермейера так же, как и критерий Вальда яв-ся критерием крайнего пессимизма игрока А, но, в отличие от критерия Вальда, игрок А, принимая решение с максимальной осмотрительностью, учитывает вероятности состояний природы.

В случае равномерного распределения вероятностей состояний природы: qj=n-1, j=1,…,n, показатель эффективности стратегии Аi, в силу формулы (16), будет равен Gi=n-1aij и , следовательно, критерий Гермейера эквивалентен критерию Вальда, т.е. стратегия, оптимальная по критерию Гермейера, оптимальна и по критерию Вальда, и наоборот.

56. Опишите метод Байеса-Лапласа нахождения оптимальной стратегии

Метод Байеса это аналитический метод, который очень полезен при сравнении гипотез. В этом методе вероятности всех возможных исходов эксперимента объединяются с гипотезами, известными до проведения эксперимента, и затем исчисляется вероятность того, что данные гипотезы подтвердятся в ходе эксперимента. Метод исчерпывающе описывается теоремой Байеса: p(Hi|UiI)=p(Hi|I)*p(Ui|HiI)/p(Ui|I)

где: p(Hi|I) – начальная вероятность того, что гипотеза H верна, исходя из имеющегося опыта I; p(Ui|I) – вероятность наблюдения события Ui, исходя только из опыта I. p(Ui|HiI) – вероятность наблюдения события Ui, исходя как из опыта I, так и из гипотезы Hi. p(Hi|UiI) – апостериорная вероятность истинности гипотезы Hi на основании опыта I и полученных экспериментальных наблюдений Ui.

Теория Бэйеса.Пусть пространство элементарных событий  представлено в виде  =Н123+...+Нn+..., где Нk- попарно несовместные события, которые часто называют гипотезами. Если событие Р(Нk)>0 при k=1,2,..., то для любого события А справедливы: формула полной вероятности             

и формулы Байеса      где i=1,2,...

Неопределенные факторы, закон распределения которых неизвестен, яв-ся наиболее характерными при исследовании качества адаптивных систем. Именно на этот случай следует ориентироваться при выборе гибких конструкторских решений. Методический учет таких факторов базируется на формировании специальных критериев, на основе которых принимаются решения. Критерии Вальда, Сэвиджа, Гурвица и Лапласа уже давно и прочно вошли в теорию принятия решений. Критерий Байеса-Лапласа в отличие от критерия Вальда, учитывает каждое из возможных следствий всех вариантов решений: Соответствующее правило выбора можно интерпретировать следующим образом: матрица решений [Wij] дополняется еще одним столбцом, содержащим математическое ожидание значений каждой из строк. Выбирается тот вариант, в строках которого стоит наибольшее значение Wir этого столбца. Критерий Байеса-Лапласа предъявляет к ситуации, в которой принимается решение, следующие требования: - вероятность появления состояния Vj известна и не зависит от времени;  - принятое решение теоретически допускает бесконечно большое количество реализаций;  - допускается некоторый риск при малых числах реализаций.Критерий Байеса-Лапласа.Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша: vBL = maxi ? aij yj. Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип). Возвращаясь к нашей игре "Поставщик" предположим, что руководители фирмы-потребителя, прежде чем  принять решение, проанализировали, насколько точно поставщие ранее выполнял сроки поставок, и выяснили, что в 25 случаях из 100 сырье поступало с опозданием. Исходя из этого, можно приписать вероятность наступления первого состояния природы вероятность yj=0,75=(1-0,25), второго - yj=0,25. Тогда согласно критерию Байеса-Лапласа оптимальным яв-ся решение А1. Стратегии ? aij yj А1 - 175* А2 -187,5 А3 – 215 А4 - 297,5 Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы  проблема выбора решения стала неоднозначной: Решение Критерии Стратегии Вальда maxmax Гурвица Сэвиджа Лапласа Байеса-Л А1 * * * А2 * * * А3 * * * А4 Из таблицы видно, что от выбранного критерия (а в конечном счете - от допущений) зависит и выбор  оптимального решения. Выбор критерия ( как и выбор принципа оптимальности) яв-ся наиболее трудной и ответственной задачей в  теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было  получить хоты-бы частичной информации отностительно вероятностного распределения состояний природы. В этом  случае, оценив распределение вероятностей состояний природы применяют метод Байеса-Лапласа, либо проводяд  эксперимент, позволяющий уточнить поведение природы.56. Опишите метод Байеса-Лапласа нахождения оптимальной стратегии Критерий Байеса. 1) Пусть А является матрицей выигрышей игрока А.

2) Известны вероятности qj=p(Пj), j=1,…,n, состояний природы Пj, j=1,…,n, удовлетворяющие условию (1). Следовательно, речь идет о принятии решения в условиях риска. 3) Полагаем l=n и матрицу В выбираем равной матрице А, т.е. bij=aij для всех i=1,…,m и j=1,…,n. 4) Коэффициенты l1,…,ln, выбираем равными соответствующим вероятностям q1,…,qn, т.е. ll=qi, i=1,…,n. Этим самым игрок А выражает полное доверие к истинности распределения вероятностей q1,…,qn, состояний природы.

Из (1) следует, что коэффициенты lj, j=1,…,n удовлетворяют условию (3).

5) Показатель эффективности стратегии Аi по критерию Байеса обозначим через Вi и находим его по формуле (3):

. (6)

Очевидно, что Вi – средневзвешенный выигрыш при стратегии Аi с весами q1,…,qn.

Если стратегию Аi трактовать как дискретную случайную величину, принимающую значения выигрышей при каждом состоянии природы, то вероятности этих выигрышей будут равны вероятностям состояний природы и тогда Вi есть математическое ожидание этой случайной величины (см. (6)).

6) Цена игры по критерию Байеса, обозначаемая нами через В, определяется по формуле (4):

7) Оптимальной среди чистых стратегий по критерию Байеса является стратегия Аk, для которой показатель эффективности максимален:Вk=В.

Лапласа.

1) Пусть А – матрица выигрышей игрока А.

2) Исходя из теоретических, либо из практических соображений, констатируется, что ни одному из возможных состояний природы Пj, j=1,…,n, нельзя отдать предпочтения. Потому все состояния природы считают равновероятностными, т.е. qj=n-1, j=1,…,n. Этот принцип называют принципом «недостаточного основания» Лапласа. Вероятности qj=n-1, j=1,…,n, удовлетворяют условию (1). Поскольку вероятности состояний природы известны: qj=n-1, j=1,…,n, то мы находимся в ситуации принятия решения в условиях риска.

3) Пусть l=n, а в качестве матрицы В можно взять матрицу, получающуюся из матрицы А, если каждую строку последней заменить на произвольную перестановку ее элементов. В частности, можем положить В=А. В общем же случае элементы матрицы В имеют вид bij=aikj(i), i=1,…, m; j=1,…,n, где aik1(i), aik2(i),…,aikn(i) – некоторая перестановка элементов ai1, ai2,…,ain i-й строки матрицы А.

4) Пусть коэффициенты lj=n-1, j=1,…,n. Очевидно, они удовлетворяют условию (2).

Выбор коэффициентов lj, j=1,…,n, таким образом подтверждает полное доверие игрока А к принципу недостаточного основания Лапласа.

5) По формуле (3) показатель эффективности стратегии Аi по критерию Лапласа, обозначаемый нами через Li, равен:

. (7)

Это есть средний арифметический выигрыш при стратегии Аi.

6) Цена игры по критерию Лапласа, обозначаемая нами через L, по формуле (4):

(8)

7) Оптимальной стратегией Аk по критерию Лапласа является стратегия с максимальным показателем эффективности: Lk=L.

Заметим, что, как следует из (7) и (8), показатель эффективности Li будет максимальным тогда и только тогда, когда максимальной будет сумма , и потому в качестве показателя эффективности стратегии Аi можно рассмотреть число , а в качестве цены игры – число .

Тогда оптимальной будет стратегия, сумма выигрышей при которой максимальна.


Дата добавления: 2018-05-09; просмотров: 457; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!