Несамопроизвольная кристаллизация



В реальных условиях процессы кристаллизации и характер образующейся структуры в значительной мере зависят от имеющихся центров кристаллизации. Такими центрами, как правило, являются частицы тугоплавких неметаллических включений, оксидов, интерметаллических соединений, образуемых примесями. К началу кристаллизации центры находятся в жидком металле в виде твердых включений. При кристаллизации атомы металла откладываются на активированной поверхности примеси, как на готовом зародыше. Такая кристаллизация называется несамопроизвольной, или гетерогенной. При несамопроизволыюй кристаллизации роль зародышей могут играть и стенки формы.


 

Рис. 3.5. Схема сопряжения кристаллических решеток А1 (1) и TiAl3 (£)

Наличие ютовых пен i рои кристаллизации приводит к уменьшению размера кристаллов при затвердевании. Эффект измельчения структуры значительно увеличивается при соблюдении структурного и размерного соответствия (расхождение в межатомных размерах не должно превышать 5 — 7 %) примесной фазы с основным металлом, которое способствует сопряжению их кристаллических решеток. Например, примесь титана в алюминии образует тугоплавкие включения фазы Т1А1з с тетрагональной кристаллической решеткой, которая хорошо сопрягается с ГЦК решеткой алюминия по плоскости (001) (рис. 3.5), чем способствует значительному измельчению структуры.

В жидком металле могут присутствовать и растворенные примеси,которые также вызывают измельчение структуры. Адсорбируясь на поверхности з'арождающихся кристаллов, они уменьшают поверхностное на-1яжение на границе раздела жидкость — твердая фаза и линейную скорость роста кристаллов. Из формулы (3.4) следует, что это способствует уменьшению Акр и появлению новых зародышей, способных к росту. Примеси, понижающие поверхностное натяжение, называют поверхностно-активными.

Измельчение структуры способствует улучшению механических свойств металла. На практике для измельчения структуры металлов и сплавов широко применяют технологическую операцию, называемую модифицированием. Она состоит во введении в жидкий сплав перед разливкой специальных добавок — модификаторов. В качестве последних используют поверхностно-активные вещества (например, бор в сталях, натрий в алюминии и его сплавах), а также элементы, образующие тугоплавкие тонкодисперсные частицы (например, титан, цирконий в алюминии и его сплавах; алюминий, титан в сталях). Модификаторы добавляют в сплавы в количествах от тысячных до десятых долей процента.

При увеличении температуры жидкого металла примеси, играющие роль дополнительных центров кристаллизации, растворяются или дезак-i ивируются, поэтому повышение температуры жидкого металла перед разливкой приводит к укрупнению зерна при кристаллизации. Наоборот, iKi.ic 1 уживание металла перед разливкой до температур, незначительно превышающих температуру плавления металла, способствует уменьшению размера зерна. Поцстуживанис эффективно при наличии примесей


74                    Глава 'Л. Формирование структуры литых мшериа.ти

(или модификаторов), образующих фазы со структурным и размерным соответствием с основным металлом; в этом случае даже после значительных перегревов можно получить мелкое зерно, особенно если удлинить выдержку перед разливкой.

3.3. Форма кристаллов и строение слитков

Форма и размер зерен, образующихся при кристаллизации, зависят от условий их роста, главным образом от скорости и направления отвода теплоты и температуры жидкого металла, а также от содержания примесей.

Рост зерна происходит по дендритной (древовидной) схеме (рис. 3.6). Установлено, что максимальная скорость роста кристаллов наблюдается по таким плоскостям и направлениям, которые имеют наибольшую плотность упаковки атомов. В результате вырастают длинные ветви, которые называются осями первого порядка. По мере роста на осях первого порядка появляются и начинают расти ветви второго порядка, от которых ответвляются оси третьего порядка и т.д. В последнюю очередь идет кристаллизация в участках между осями дендритов.

Дендриты растут до тех пор, пока не соприкоснутся между собой. После этого окончательно заполняются межосные пространства, и дендриты превращаются в полновесные кристаллы с неправильной внешней огранкой. Такие кристаллы называют зернами или кристаллитами. При недостатке жидкого металла для заполнения межосных пространств (например, на открытой поверхности слитка или в усадочной раковине) кристалл сохраняет дендритную форму. Такой дендрит обнаружен

Д.К. Черновым на поверхности усадочной раковины стального слитка массой 100 т. На границах между зернами в

участках между осями дендритов накап-Рис. 3.6. Схема строения

ливаются примеси, появляются поры из-
дендрита:                                                                             г          '                              г

1 - 3- оси соответственно перво-    за усадки и трудностей подхода жидкого

го, второго и третьего порядков     металла к фронту кристалл изации.


Л.Л '1'ирмп кри< 'I ii.i.и in и строение слитком                                         75

Условия отвода тепло ii.i при кристаллизации значительно влияют на форму зерен. Кристаллы рас гу i преимущественно в направлении, обра: ном отводу теплоты. Поэтому при направленном теплоогводе образуются иьпянутые (столбчатые)  кристаллы. Если теплота от растущего кри с ia.ua отводи гея во всех трех направлениях с приблизительно одинаковой скоростью, формируются равноосные кристаллы.

Структура слитка зависит от многих факторов, основные из которых следующие: количество и свойства примесей в чистом металле или легирующих элементов в сплаве, температура разливки, скорость охлаждения при кристаллизации, а также конфигурация, температура, теплопроводность, состояние внутренней поверхности литейной формы. На рис. 3.7 приведены схемы макроструктур слитков, полученных в простой вертикальной металлической форме.


а                        б                      в


Рис. 3.7. Схемы макроструктур слитков:

а типичная; б- трат кристаллическая; е- однородная мелко-к'[ши( i ая


Типичная структура слитка сплавов состоит из трех зон (см. рис 3.7, а). Жидкий металл прежде всего переохлаждается в местах соприкосновения с холодными стенками формы. Большая степень переохлаждения способствует образованию на поверхности слитка зоны / мелких равноосных кристаллов. Отсутствие направленного роста кристаллов мой зоны объясняется их случайной ориентацией, которая является причиной столкновения кристаллов и прекращения их роста. Ориентация кристаллов, в свою очередь, зависит от состояния поверхности формы (шероховатость, адсорбированные газы, влага) и наличия в жидком ме-[ллле оксидов, неметаллических включений. Эта зона очень тонка и не всегда различима невооруженным глазом. Затем происходит преимуще-(I венный рост кристаллов, наиболее благоприятно ориентированных по о I ношению к теплоотводу. Так образуется зона £ столбчатых кристаллов,


расположенных нормально к стенкам формы. Наконец, в середине слитка, где наблюдается наименьшая степень переохлаждения и не ощущается направленного отвода теплоты, образуются равноосные кристаллы больших размеров (зона 3).

Применяя различные технологические приемы, можно изменить количественное соотношение зон или исключить из структуры слитка какую-либо зону вообще. Например, перегрев сплавов перед разливкой и быстрое охлаждение при кристаллизации приводят к формированию структуры, состоящей практически из одних столбчатых кристаллов (рис. 3.7, б). Такая структура называется транскристаллической. Подобную структуру имеют слитки очень чистых металлов. Зона столбчатых кристаллов характеризуется наибольшей плотностью, но в месте стыка столбчатых кристаллов собираются нерастворимые примеси, и слитки с транскристаллической структурой часто растрескиваются при обработке давлением. Транскристаллическая структура, образовываясь в сварных швах, уменьшает их прочность.

Низкая температура разливки сплавов, продувка жидкого металла инертными газами, вибрация, модифицирование приводят к уменьшению и даже исчезновению зоны столбчатых кристаллов и получению слитков со структурой, состоящей из равноосных кристаллов (см. рис. 3.7, б).

В верхней части слитка, которая затвердевает в последнюю очередь, концентрируется усадочная раковина. Под усадочной раковиной металл получается рыхлым, в нем содержится много усадочных пор. Часть слитка с усадочной раковиной и рыхлым металлом отрезают.

Наконец, качественная структура формируется при непрерывной разливке. В этом случае жидкий металл поступает из печи через специальное устройство непосредственно в водоохлаждаемый кристаллизатор, а затвердевший металл непрерывно вытягивается с противоположного конца кристаллизатора. При этом литой металл отличается высокой пластичностью и мелкозернистой структурой, приближаясь по качеству к деформированному металлу. Применение этого способа разливки позволяет автоматизировать и механизировать технологический процесс, сократить производственные площади, полностью исключить применение изложниц, разгрузить обжимное оборудование, облегчить труд обслуживающего персонала, увеличить выход годного металла вследствие заполнения жидким металлом усадочной раковины. Все это приводит к уменьшению себестоимости металла.

Слитки сплавов имеют неоднородный состав. Например, в стальных слитках по направлению от поверхности к центру и снизу вверх увеличивается концентрация углерода и вредных примесей — серы и фосфора.


Химическая неоднородность но отдельным зонам слитка называется зональной ликвацией. Она отрицательно влияет на механические свойства. В реальных слитках помимо зональной встречаются и другие виды ликва ции. Так, дендритная ликвация свойственна сплавам с широким интер валом кристаллизации. Она характеризуется неодинаковым химическим составом по сечению зерна (дендрита). Центр зерна обогащен более ту гоилавким элементом, к периферии его количество уменьшается.

Гравитационная ликвация образуется в результате разницы в плотностях твердой и жидкой фаз, а также при кристаллизации несмешиваю-щихся жидких фаз. Это, например, свойственно антифрикционным сплавам олова с сурьмой и меди со свинцом. В зависимости от того, легче или тяжелее твердая фаза по сравнению с жидкой, она при кристаллизации соответственно всплывает на поверхность или опускается на дно отливки. Такое расслоение отливки (слитка) по плотности недопустимо для антифрикционных сплавов, поскольку коэффициент трения в работающей паре в большой степени зависит как от особенности, так и однородности структуры.

Для уменьшения гравитационной ликвации используют большие скорости охлаждения отливок (слитков). Применение космической технологии полностью устраняет этот вид дефекта, поскольку в условиях космоса гравитационные силы чрезвычайно малы.

3.4. Получение монокристаллов

Большое научное и практическое значение имеют монокристаллы. Монокристаллы отличаются минимальными структурными несовершен-( iнами. Получение монокристаллов позволяет изучать свойства метал-1Ш1, исключив влияние границ зерен. Применение в монокристалличе-< ком состоянии германия и кремния высокой чистоты дает возможность и (пользовать их полупроводниковые свойства и свести к минимуму некон-||>олируемые изменения электрических свойств.

Монокристаллы можно получить, если создать условия для роста к |>и(галла только из одного центра кристаллизации. Существует несколько методов, в которых использован этот принцип. Важнейшими из них являются методы Бриджмена и Чохральского.

Метод Бриджмена (рис. 3.8, а) состоит в следующем: металл, помещенный в тигель с коническим дном 5, нагревается в вертикальной i рубчатой печи / до температуры на 50 - 100 °С выше температуры сто плавления. Затем тигель с расплавленным металлом 2 медленно удаля ей я hi печи. Охлаждение наступает в первую очередь в вершине конуса,


Дата добавления: 2018-04-05; просмотров: 1260; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!