Показатели соотношения: сущность, методика расчета, графическое изображение



Коэффициенты соотношения характеризуют отношение двух самостоятельных совокупностей. Используются для характеристики обеспеченности (уровня и качества) медицинской помощью: число коек на 10000 человек; число врачей на 10000 жителей; число прививок на 1000 жителей (отношение числа лиц, охваченных прививками, к численности населения административной территории, умноженное на 1000).

При анализе статистической совокупности используют графические изображения (графические образы — точки, линии, фигуры). Любой график содержит следующие элементы: масштаб, условные обозначения (окраска, штриховка), фигуры, линии, цифры. В медицинской статистике применяют линейные, плоскостные, объемные и фигурные диаграммы. Линейные диаграммы отражают изменение явления в динамике. Сезонный, циклический характер изображают радиальной диаграммой, при этом месяцы года располагают по часовой стрелке. Плоскостные диаграммы (секторные, внутристолбиковые) используют для изображения показателей распределения, доли, процентов, структуры. Ленточные, столбиковые и пирамидальные диаграммы показывают частоту (распространенность, уровень) явления. Фигурные диаграммы, картограммы и картодиаграммы отображают показатели на определенных административных территориях в виде обозначений, фигур.

Вариационные ряды. Виды, определение, составные части, правила построения.

Для вычисления средних величин необходимо построить вариационный ряд. Вариационные ряды бывают: 1) простыми и взвешенными; 2) сгруппированными и несгруппированными; 3) открытыми и закрытыми; 4) одномодальными и мультимодальными; 5) симметричными и несимметричными; 6) дискретными и непрерывными; 7) четными и нечетными.

Несгруппированные (простые) – составляются при малом числе наблюдений (до 30), сгруппированные – более 30.

Правила составления вариационных рядов:

1) расположить все варианты по порядку;

2) суммировать единицы, имеющие одинаковый признак, т.е. найти частоту каждой варианты;

3) определить количество групп и размер интервала;

4) разбить весь ряд на группы, используя выбранный интервал и строго соблюдая непрерывность сгруппированного ряда;

5) дать графическое изображение.

Степень разнообразия (колеблемости) признака в разнородном вариационном ряду можно оценить по коэффициенту вариации (отношение среднего квадратического отклонения к средней арифметической, умноженное на 100%); при вариации менее 10% отмечается слабое разнообразие, при вариации 10—20% — среднее, а при вариации более 20% — сильное разнообразие признака. Если нет возможности сравнить вариационный ряд с другими, то используют правило трех сигм. Если к средней прибавить одну сигму, то этой вычисленной средней соответствует 68,3%, при двух сигмах — 95,4%, при трех сигмах — 99,7% от всех признаков.

Понятие о средних величинах. Виды средних величин. Методика расчета средней арифметической, взвешенной.

Средние величины — это количественная обобщающая характеристика однородной совокупности с изменяющимся варьирующим признаком. Они используются при оценке физиологических показателей (средняя частота пульса, дыхания, АД), параметров физического развития (средний рост юношей 18 лет, средняя масса тела), при санитарно-гигиенических характеристиках (средняя жилая площадь на одного человека, среднее число бактерий в 1 мл), при количественном описании медицинских услуг (среднее число посещений в час, средняя занятость койки в течение года). Виды средних величин: средняя арифметическая простая (сумма всех значений признака, деленная на число наблюдений); средняя арифметическая взвешенная (сумма всех величин, умноженная на свое число встречаемости и деленная на число наблюдений — объектов); мода — величина с наибольшей частотой повторения; медиана — величина, делящая вариационный ряд пополам; средняя прогрессивная — средняя арифметическая, вычисленная из лучшей половины вариационного ряда.

Основные свойства средней величины: 1) имеет абстрактный характер, так как является обобщающей величиной: в ней стираются случайные колебания; 2) занимает срединное положение в ряду (в строго симметричном ряду); 3) сумма отклонений всех вариант от средней величины равна нулю. Данное свойство средней величины используется для проверки правильности расчета средней. Она оценивается по уровню колеблемости вариационного ряда. Критериями такой оценки могут служить: амплитуда (разница между крайними вариантами); среднее квадратическое отклонение, показывающее, как отличаются варианты от рассчитанной средней величины; средняя ошибка средней арифметической (отношение среднего квадратического отклонения к квадратному корню из общего числа наблюдений — объектов).


Дата добавления: 2018-04-05; просмотров: 588; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!