Клеточные и молекулярные механизмы обучения и памяти



В настоящее время исследования ведутся по пути двух основных гипотез механизмов обучения:

- синаптической - предполагающей участие синаптических соединений в формировании феноменов пластичности;

- мембранной -включающей постсинаптическую локализацию следового процесса (от изменений свойств возбудимой постсинаптической мембраны до цитоплазматических белковых изменений нейрона).

Участие синаптических соединений в качестве локусов пластичности и субстрата памяти широко признано, но вместе с тем процесс обучения связан не только с синаптическими, но и с мембранными и цитоплазматическими изменениями постсинаптических нейронов.

В настоящее время все этапы формирования, удержания и воспроизведения энграммы рассматривают от процессов синтеза и выброса нейромедиаторов до изменения метаболизма нуклеиновых кислот и белков.Эти этапы можно представить в форме последовательных биохимических процессов в нейроне: от изменения проницаемости наружных мембран, внутриклеточной концентрации ионов кальция, активации соответствующих ферментов (протеинкиназ) и фосфорилирования белков до усиления экспрессии (активации) генома нервных клеток. Возникающая активация генетического аппарата нейрона приводит к усилению синтеза информационных РНК и белков, часть которых, особенно специфических белков, транспортируется к определенным участкам соматической мембраны и обусловливает устойчивые изменения ее свойств. Указанные процессы в конечном итоге повышают возбудимость нейронов, облегчая узнавание нейронов и установление прочной функциональной связи между ними в ансамбле, в котором хранится след памяти.

В понимании природы энграммы исторически сложились две основные группы гипотез, составляющие, по мнению Р.И. Кругликова:

1) Биохимические (молекулярные) механизмы памяти -кодирование индивидуального опыта в различных химических субстратах мозга - нуклеиновых кислотах, белках, особых пептидах. Источником биохим. гипотез стала гипотеза Хидена о кодировании приобретаемого навыка в последовательности нуклеотидов РНК нейронов с последующим синтезом на этой «обученной» РНК «запоминающих» белков. Позднее пришли к выводу, что в консолидации энграммы участвует белковая структура ДНК, а РНК необходима для передачи специфического информационного кода.

Нейрональные механизмы (клеточные) памяти - пластичная реорганизация межнейронных связей со стабильно повышенной эффективностью синаптической передачи и формирование устойчивых многонейронных систем, представляющих собой структурный след памяти - энграмму.

Энграмма - след памяти, сформированный в результате обучения.

Описание памяти может быть выполнено по динамике развития процессов, приводящих к формированию энграммы, по состоянию памяти, характеризующему ее готовность к воспроизведению энграммы, по устройству, характеризующему состав энграммы. Еще один способ - это описание памяти по виду информации. Эти аспекты описания фактически соответствуют основным концепциям памяти.

В последние годы все большее внимание привлекает гипотеза в которойэнграмму следует рассматривать как многонейронную систему, в которой хранение информации осуществляется за счет временных и пространственных межнейронных связей со стабильно повышенной эффективностью синаптической передачи.

Этапы формирования энграмм. По современным представлениям, фиксация следа в памяти осуществляется в три этапа:

- Вначале, в иконической памяти на основе деятельности анализаторов возникают сенсорный след (зрительный, слуховой, тактильный и т. п.). Эти следы составляют содержание сенсорной памяти.

- На втором этапе сенсорная информация направляется в высшие отделы ГМ. В корковых зонах, а также в гиппокампе и лимбической системе происходит анализ, сортировка и переработка сигналов, с целью выделения из них новой для организма информации.

- На третьем этапе следовые процессы переходят в устойчивые структуры долговременной памяти. Перевод информации из кратковременной памяти в долговременную по некоторым предположениям может происходить как во время бодрствования, так и во сне.

К отличительным особенностям генома нервных клетокотносится их исключительно высокий по сравнению с другими тканями уровень функционально активных (транскрибируемых) уникальных последовательностей ДНК. Характерным для нервных клеток является прогрессирующее увеличение в них (в течение индивидуальной жизни) числа открытых для синтеза уникальных кодонов ДНК, чего не происходит в тканях других органов.

Обучение объясняется не синтезом РНК, а активацией участков генома,ответственных за метаболизм нуклеиновых кислот и синтез «белков обучения».

В основе кратковременной и долговременной памяти лежат пластические процессы в синаптическом аппарате и в самой соме нейрона.Под пластичностью подразумевается длительное изменение свойств нейрона, влияющих на передачу сигнала. В основе мембранных процессов постсинаптической пластичности лежит изменение чувствительности и количества рецепторного белка. Изменение чувствительности рецепторного белка происходит под действием нейромедиатора, который переводит белок из неактивной формы в активную. Длительное сохранение таких изменений приводит к тому, что следующая порция медиатора окажет более сильное (или слабое) воздействие на проводимость постсинаптической мембраны нейрона, его возбудимость и дальнейшие биохимические преобразования в самой соме нейрона.

Таким образом, процессы кратковременной памяти, ее временные последовательности динамично задействованных нервных элементов преобразуются в структурно-пространственную матрицу. Поэтому долговременная память сама по себе, вне момента ее образования и извлечения, представляется не процессом, а структурой (с многоуровневым пространственным распределением).В этом причина ее устойчивости к многочисленным внешним воздействиям, и в этом ее существенное отличие от сенсорной и кратковременной форм памяти, которые, по сути, являются процессами.

Память нельзя рассматривать как нечто статичное, находящееся строго в одном месте или в небольшой группе клеток. Память существует в динамичной и относительно распределенной форме. При этом мозг действует как функциональная система, насыщенная разнообразными связями, которые лежат в основе регуляции процессов памяти.


Дата добавления: 2018-04-04; просмотров: 1105; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!