Электролитическая диссоциация



1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации () зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n) к общему числу молекул, введенных в раствор (N).


Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например, NaCl) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

 

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например, HCl), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.


Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H2O), хотя он является основным участником.

 

CaCl2  Ca2+ + 2Cl-

KAl(SO4)2 K+ + Al3+ + 2SO42-

HNO3  H+ + NO3-

Ba(OH)2  Ba2+ + 2OH-

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl, HBr, HI, HClO4, H2SO4,HNO3) и сильные основания (LiOH, NaOH, KOH, RbOH, CsOH,Ba(OH)2,Sr(OH)2,Ca(OH)2).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

 

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

 

К слабым электролитам относятся:

1) почти все органические кислоты (CH3COOH, C2H5COOH и др.);

2) некоторые неорганические кислоты (H2CO3, H2S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca3(PO4)2; Cu(OH)2; Al(OH)3; NH4OH);

4) вода.

Они плохо (или почти не проводят) электрический ток.

СH3COOH  CH3COO- + H+

Cu(OH)2  [CuOH]+ + OH- (первая ступень)

[CuOH]+  Cu2+ + OH- (вторая ступень)

H2CO3  H+ + HCO- (первая ступень)

HCO3-  H+ + CO32- (вторая ступень)

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c) и составу молекулы электролита (стехиометрическим индексам), например:

 

c H2SO4 2c c 2H+ + SO42-

 

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации () - отношение числа распавшихся на ионы молекул (n) к общему числу растворенных молекул (N):

 

 = n / N

 

и выражается в долях единицы или в % ( = 0,3 – условная граница деления на сильные и слабые электролиты).


Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H2O) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.


Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации и исходную концентрацию вещества c в растворе

Константа диссоциации (KD) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше KD, тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням

Закон разбавления показывает, что степень диссоциации данного слабого электролита зависит от его концентрации и константы диссоциации.

Последняя в данном растворителе и для данного электролита зависит только от температуры.

При очень низкой степени диссоциации (α < 1%) принимают, что (1 − α) ≅ 1. Тогда уравнение Оствальда упрощается до формулы: Kд = α2 с0. В таком приближенном виде уравнение Оствальда чаще всего и используется химиками.

 

для слабых электролитов закон разбавления Оствальда можно записать в более простом виде:

Константа диссоциации, как и любая константа равновесия, при данной температуре постоянна. Поэтому, если уменьшается концентрация вещества (раствор разбавляют), то для сохранения постоянства константы диссоциации должна возрастать величина α. Посмотрите опыт из Единой коллекции цифровых образовательных ресурсов: при разбавлении концентрированной уксусной кислоты раствор начинает слабо проводить ток (лампочка слегка накаляется). Это означает, что при разбавлении возрастает степень диссоциации слабого электролита. Наоборот, чем концентрирование раствор, тем меньше степень диссоциации α.

 

Билет 19(18)

Диссоциация молекул воды.

Чистая вода, хоть и плохо (по сравнению с растворами электролитов), но может проводить электрический ток. Это вызвано способностью молекулы воды распадаться (диссоциировать) на два иона которые и являются проводниками электрического тока в чистой воде (ниже под диссоциацией подразумевается электролитическая диссоциация - распад на ионы):

H2O ↔ H+ + OH-


Поскольку степень диссоциации воды очень мала, то концентрация недиссоциированных молекул в воде практически равно общей концентрации воды.

 

Получившаяся сумма pH и pOH, также как и произведение, которое логарифмировали, является постоянной и равна 14, так если pH=3 то pOH=11 (pH иpOH могут быть и отрицательными, и если pH=-1 тогда pOH=15).

В зависимости от pH растворы делят на нейтральные, кислые и щелочные. При pH=7раствор нейтральный, при pH<7 - кислый, при pH>7 - щелочной.

От pH раствора очень сильно зависит протекание многих химических реакций, как на уровне процессов проводящихся в лаборатории и на производстве, так и на уровне реакций в живых организмах, поэтому химикам и биологам с водородным показателем иметь дело приходится очень часто. Все обитатели природных вод и почв адаптированы к определенному водородному показателю, и в случаи его изменения могут погибнуть. Большинство живых организмов могут существовать лишь в средах, близких к нейтральным. Отчасти это связано с тем, что под действием ионов H+ и OH-многие белки, содержащие кислотные или основные группы, изменяют свою конфигурацию и заряд. А в сильнокислой и сильнощелочной средах рвётся пептидная связь, которая соединяет отдельные аминокислотные остатки в длинные белковые цепи. Из-за этого ультраосновные (сильнощелочные) растворы вызывают щелочные ожоги кожи и разрушают шёлк и шерсть, состоящие из белка. Все живые организмы вынуждены поддерживать во внутриклеточных жидкостях определённое значение рН. От величины водородного показателя почвенного раствора зависит урожайность различных культурных растений. На кислых почвах с pH=5-5,5 не развиваются проростки ячменя, но хорошо развивается картофель.

ИОННОЕ ПРОИЗВЕДЕНИЕ ВОДЫ

При определенных условиях, вода может вести себя как акцептор протонов (в присутствии кислоты) или как донор протонов (в присутствии основания). Интересной особенностью воды является то, что она может подвергаться процессу самодиссоциации (автоионизации), т.е. быть одновременно донором и акцептором протонов по отношению к самой себе.

2H2O ↔ H3O+ + OH

Эта реакция – самопроизвольная диссоциация, осуществляется в небольшой степени. Ее можно упростить, если H3O+ заменить на H+

H2O ↔ H+ + OH

 

Буферный раствор

Буферные растворы — растворы с определённой устойчивой концентрацией водородных ионов. рН буферных растворов мало изменяется при прибавлении к ним небольших количеств сильного основания или сильной кислоты

Буферным раствором или просто буфером называют такой раствор, pH которого не претерпевает значительных изменений при добавлении небольших количеств кислоты либо основания.

 


Дата добавления: 2018-04-04; просмотров: 1173; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!