На что ориентируются цветовые модели типа LAB?



Lab — аббревиатура названия двух разных (хотя и похожих) цветовых пространств. При разработке Lab преследовалась цель создания цветового пространства, изменение цвета в котором будет более линейным с точки зрения человеческого восприятия (по сравнению с XYZ), то есть с тем, чтобы одинаковое изменение значений координат цвета в разных областях цветового пространства производило одинаковое ощущение изменения цвета. Таким образом математически корректировалась бы нелинейность восприятия цвета человеком. Оба цветовых пространства рассчитываются относительно определенного значения точки белого. Если значение точки белого дополнительно не указывается, подразумевается, что значения Lab рассчитаны для стандартного осветителя D50. В цветовом пространстве Lab значение светлоты отделено от значения хроматической составляющей цвета (тон, насыщенность). Светлота задана координатой L (изменяется от 0 до 100, то есть от самого темного до самого светлого), хроматическая составляющая — двумя декартовыми координатами a и b. Первая обозначает положение цвета в диапазоне от зеленого до красного, вторая — от синего до зелёного. В отличие от цветовых пространств RGB или CMYK, которые являются, по сути, набором аппаратных данных для воспроизведения цвета на бумаге или на экране монитора (цвет может зависеть от типа печатной машины, марки красок, влажности воздуха в цеху или производителя монитора и его настроек), Lab однозначно определяет цвет. Поэтому Lab нашел широкое применение в программном обеспечении для обработки изображений в качестве промежуточного цветового пространства, через которое происходит конвертирование данных между другими цветовыми пространствами (например, из RGB сканера в CMYK печатного процесса). При этом особые свойства Lab сделали редактирование в этом пространстве мощным инструментом цвета коррекции. Благодаря характеру определения цвета в Lab появляется возможность отдельно воздействовать на яркость, контраст изображения и на его цвет. Во многих случаях это позволяет ускорить обработку изображений, например, при допечатной подготовке. Lab предоставляет возможность избирательного воздействия на отдельные цвета в изображении, усиления цветового контраста, незаменимыми являются и возможности, которые это цветовое пространство предоставляет для борьбы с шумом на цифровых фотографиях

Поясните, что такое полигональная сетка?

Полигональная сетка— это совокупность вершин, рёбер и граней, которые определяют форму многогранного объекта в трехмерной компьютерной графике и объёмном моделировании. Гранями обычно являются треугольники, четырехугольники или другие простые выпуклые многоугольники (полигоны), но сетки могут также состоять и из наиболее общих вогнутых многоугольников, или многоугольников с дырками.

Учение о полигональных сетках — это большой подраздел компьютерной графики и геометрического моделирования. Множество операций, проводимых над сетками, может включать булеву алгебру, сглаживание, упрощение и многие другие. Разные представления полигональных сеток используются для разных целей и приложений. Полигональные сетки явно представляют лишь поверхность, а не объём.

 

Какие существуют способы задания полигональной сетки?

Полигональные сетки могут быть представлены множеством способов, используя разные способы хранения вершин, ребер и граней. В них входят:

-Список граней: описание граней происходит с помощью указателей в список вершин. Сетка с использованием списка граней представляет объект как множество граней и множество вершин. Это самое широко используемое представление, будучи входными данными, типично принимаемыми современным графическим оборудованием. Список граней лучше для моделирования, чем вершинное представление тем, что он позволяет явный поиск вершин грани, и граней окружающих вершину.

-Крылатое представление: в нём каждая точка ребра указывает на две вершины, две грани и четыре (почасовой стрелке и против часовой) ребра, которые её касаются. Крылатое представление позволяет обойти поверхность за постоянное время, но у него большие требования по памяти хранения. Это представление широко используется в программах для моделирования для предоставления высочайшей гибкости в динамическом изменении геометрии сетки, потому что могут быть быстро выполнены операции разрыва и объединения.

Их основной недостаток: высокие требования памяти и увеличенная сложность из-за содержания множества индексов.

 

 

 Вершинное представление: представлены лишь вершины, указывающие на другие вершины. Информация о гранях и ребрах выражена неявно в этом представлении. Однако, простота представления позволяет проводить над сеткой множество эффективных операций. Вершинное представление описывает объект как множество вершин, соединенных с другими вершинами. Это простейшее представление, но оно не широко используемое, так как информация о гранях и ребрах не выражена явно. Поэтому нужно обойти все данные, чтобы сгенерировать список граней для рендеринга. Кроме того, нелегко выполняются операции на ребрах и гранях. Однако, сетки ВП извлекают выгоду из малого использования памяти и эффективной трансформации.

 

-Четырёх рёберные сетки, которые хранят ребра, полуребра и вершины без какого-либо указания полигонов. Полигоны прямо не выражены в представлении, и могут быть найдены обходом структуры. Требования по памяти аналогичны полурёберным сеткам

 

-Таблица углов, которые хранят вершины в предопределенной таблице, такой, что обход таблицы неявно задает полигоны. В сущности, это "веер треугольников", используемый в аппаратном рендеринге. Представление более компактное и более производительное для нахождения полигонов, но операции по их изменению медленны. Более того, таблицы углов не представляют сетки полностью. Для представления большинства сеток нужно несколько таблиц углов (вееров треугольников).


Дата добавления: 2018-04-04; просмотров: 391; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!