Глобальный эволюционизм..549 31 страница
Следует помнить, что, наблюдая вселенную, мы видим галактики не такими, какие они есть теперь, а такими, какими они были в далеком прошлом. Свет от них приходит к нам через пространство в миллиарды и миллиарды километров, на преодоление которого он затрачивает миллионы лет. Свет от ближайшей к нам галактики Андромеды достигает Земли через 1,5 млн лет. С помощью больших телескопов можно наблюдать еще намного более далекие галактики, и мы видим их такими, какими они были миллиарды лет назад. Расстояние до самых дальних из наблюдаемых в настоящее время галактик — свыше 10 млрд световых лет.
Изучение мира галактик является сейчас наиболее бурно развивающейся областью астрономии. Именно в этой области происходят поразительные открытия, которые подводят нас к разгадке глубинных тайн Вселенной, загадок, наиболее потрясающих воображение. Изучение галактик требует максимально мощных инструментов, в частности, больших оптических телескопов, а также внеоптических средств и методов исследования слабых объектов, прежде всего радиоастрономических.
Одна из центральных проблем внегалактической астрономии связана с определением расстояний до галактик и размеров самих галактик. Расстояния до ближайших галактик, которые можно разложить на звезды, определяются по их светимости. Сложнее оценить расстояние до далеких галактик.
В 1912 г. американский астроном В. Слайфер обнаружил эффект красного смещения в спектрах далеких галактик: их спектральные линии оказались смещенными к длинноволновому (красному) краю по сравнению с такими же линиями в спектрах источников, неподвижных относительно наблюдателя.
|
|
А в 1929 г. американский астроном Э. X а б б л, сравнивая расстояния до галактик и их красные смещения, обнаружил, что последние растут в среднем пропорционально расстояниям (закон Хаббла). Этот закон дал астрономам эффективный метод определения расстояний до галактик по следующей формуле:
r = cz / H (Мпк),
где r – расстояние до галактики; с — скорость света; z = (λпр—λис)/λис; Н — постоянная Хаббла. По современной оценке, постоянная Хаббла (отношение скорости удаления (V) внегалактических источников к расстоянию (R) до них Н = V/R) составляет от 50 до 100 км/(сМпк). В настоящее время измерены красные смещения тысяч галактик и квазаров.
Чрезвычайно многообразны формы галактик. Типология форм галактик, разработанная еще Э. Хабблом, в основном сохранилась до настоящего времени. Хаббл выделял три основных типа галактик:
эллиптические, имеющие круглую или эллиптическую форму (обозначаются Е); это наиболее простые галактики, не содержащие горячих звезд, сверхгигантов, пыли и газовых туманностей; в центре их нет ядра;
|
|
спиральные, которые Хаббл разбил на два семейства — обычные (S) и пересеченные (SB). У первых ветви выходят непосредственно из ядра; у вторых ядро пересечено широкой, яркой полосой, называемой перемычкой или баром; спиральные ветви отходят от концов бара;
неправильные галактики (Ir) имеют клочковатое строение и неправильную форму; яркость и светимость их невелики; они изобилуют горячими сверхгигантами, газовыми туманностями и пылью (например, Большое и Малое Магеллановы Облака); к неправильным галактикам относятся также взаимодействующие галактики; большинство неправильных галактик — карлики.
Форма и структура галактик связаны с их основными физическими характеристиками: размером, массой, светимостью. И по этим характеристикам мир галактик оказался поразительно разнообразным.
В центрах галактик обычно сосредоточено огромное количество вещества (до 10% всей ее массы). Здесь происходят выбросы большого количества вещества, что приводит к интенсивному движению от центра туч водорода. В отдельных галактиках ядро, по-видимому, может представлять собой черную дыру.
|
|
11.6.2. Наша Галактика — звездный дом человечества. Особый интерес вызывает вопрос о том, что представляет собой наш звездный дом — наша Галактика. Те отдельные звезды, которые мы можем различить на ночном небе,— просто ближайшие к нам звезды нашей Галактики. Большая же часть Галактики видна лишь
как размытая световая полоса, пересекающая небо. Это так называемый Млечный Путь. Благодаря этому (в отличие от других галактик) нашу Галактику может легко наблюдать на небе каждый: на ночном небе светящаяся полоса Млечного Пути представляет собой огромное количество удаленных звезд нашей Галактики, диск которой мы видим как бы «с ребра». Средний телескоп позволяет различить в Млечном Пути мириады отдельных звезд.
Наша Галактика — гигантская звездная система, состоящая приблизительно из 200 млрд звезд, среди них и наше Солнце. Кроме звезд Галактика содержит много пыли, газа; она пронизана магнитными полями, заполнена космическими лучами. По форме она представляет собой достаточно правильный диск с шарообразным утолщением (балдж) в центре (это напоминает линзу или чечевицу). Диаметр Галактики около 100 000 световых лет (примерно 30 кпк), толщина ее в 10—15 раз меньше, а масса Галактики 2 10" масс Солнца. Около 1 % этой массы составляет межзвездный водород, преимущественно нейтральный. Возраст Галактики около 15 млрд лет.
|
|
Звездный состав Галактики очень разнообразный. Звезды различаются по физическим, химическим характеристикам, особенностям орбит, возрасту и др. Есть старые звезды и молодые (около 100 тыс. лет), некоторые звезды рождаются в настоящее время. Подавляющее большинство звезд имеет «средний» возраст — несколько миллиардов лет. К ним относится и наше Солнце — рядовая звезда нашей Галактики, — которое расположено ближе к ее краю, примерно в 25 000 световых лет от ядра Галактики.
Солнечная система обращается вокруг центра Галактики со скоростью около 220 км/с. Центр нашей Галактики лежит в направлении на созвездие Стрельца (хотя расположен гораздо дальше). Солнце совершает один оборот вокруг центра Галактики за 250 млн лет. Этот период может быть назван галактическим годом. История человечества по сравнению с этим периодом — только краткий миг. Вся наша Галактика вращается вокруг центра Местной системы галактик (примерно на 2/3 пути между нашей Галактикой и туманностью Андромеды, на расстоянии 0,46 Мпк от Галактики).
Особый интерес для астрономов представляет центр Галактики. Наблюдать в оптические телескопы центр Галактики не удается из-за мощного слоя межзвездной пыли, ослабляющего свет в десятки тысяч раз. Зато он доступен наблюдениям в рентгеновском и инфракрасном диапазонах. Данные внеоптической астрономии, а также наблюдения в оптические телескопы за движением близких к центру Галактики звезд позволяют сделать убедительный вывод, что ядром Галактики является черная дыра (см. 11.5.7).
К счастью, расположенная в центре нашей Галактики черная дыра невелика по сравнению с ядрами других галактик и не активна в той мере, в какой бывают активны ядра галактик, грандиозные взрывы которых с энергией примерно 1060 эрг заявляют о себе буквально на всю Вселенную.
11.6.3. Скопления галактик и загадка темной (скрытой) материи.
Развитие внегалактической астрономии в XXI в. привело еще к одному важному открытию. Оказалось, что большинство галактик входит в группировки, которые насчитывают от нескольких галактик (группа галактик) до сотен и тысяч галактик (скопление галактик) и даже облака скоплений (сверхскопления). Наблюдаются и одиночные галактики, но они относительно редки (не более 10%). Другими словами, если галактики — это «острова Вселенной», то они, как правило, объединены в архипелаги. Размеры галактик тоже различны. Есть галактики-карлики в несколько десятков световых лет и галактики-великаны с поперечником до 18 млн световых лет.
Средние расстояния между галактиками в группах и скоплениях примерно в 10—20 раз больше, чем размеры крупнейших галактик. Расстояния между скоплениями галактик составляют десятки мега-парсек. Таким образом, галактики заполняют пространство с большей относительной плотностью, чем звезды во внутригалактическом пространстве (расстояния между звездами в среднем в 20 млн раз больше их диаметра).
Наиболее исследована Местная группа галактик, в которой самыми яркими являются наша Галактика и туманность Андромеды. Вокруг них, в свою очередь, располагаются еще целые семейства галактик. Так, в семейство нашей Галактики входят 14 карликовых эллиптических галактик, несколько внегалактических шаровых скоплений и ряд так называемых неправильных галактик, среди которых крупнейшие Магеллановы Облака (Большое и Малое). Несколько меньшее семейство у туманности Андромеды (одна спиральная, две эллиптические и несколько карликовых).
Ближайшие соседние группы галактик располагаются в 2—5 Мпк от Местной группы и по составу похожи на нее. В пределах 10—20 Мпк около нашей Галактики обнаружено несколько десятков групп галактик. Ближайшее крупное скопление галактик находится в созвездии Девы на расстоянии около 20 Мпк. В это скопление входит около 200 галактик средней и высокой светимости. Скопление в созвездии Девы представляет собой, по-видимому, центральное сгущение еще более крупной системы галактик — сверхскопления галактик. (Уже давно замечено, что яркие галактики расположены по небу не беспорядочно, а поясом, который можно назвать Млечным Путем галактик.) Общее число галактик нашего сверхскопления, исключая карликовые, около 20 000, диаметр его около 60 Мпк. Ближайшие соседи нашего Сверхскопления — сверхскопления в созвездии Льва (на расстоянии 140 Мпк) и в созвездии Геркулеса (190 Мпк). В настоящее время выявлено свыше полусотни сверхскоплений галактик.
Скопления галактик представляют собой грандиозные целостные системы, элементы которых (отдельные галактики) взаимодействуют между собой. Большие галактики, передвигаясь в пространстве, своим тяготением увлекают за собой соседние галактики, рассеивают их, увлекают за собой межгалактический газ, хотя и сами при этом испытывают торможение. Само скопление как целое, как «гравитационная яма», по-видимому, может «всасывать» в себя межзвездный газ из межгалактической среды. Как недавно выяснилось, некоторые галактические скопления содержат весьма значительное количество горячего (107—108 К) ионизированного газа, который является мощным источником рентгеновского излучения. В ряде скоплений масса такого газа сравнима с суммарной массой галактик.
Галактики могут сталкиваться, при этом массивные галактики обычно выступают в роли «галактических каннибалов» — захватывают звезды проходящих мимо них галактик. Так, через 3 млрд лет ожидается поглощение нашей Галактикой приближающегося к ней Большого Магелланового Облака. А примерно через 5 млрд лет, когда погаснет Солнце, наша Галактика столкнется с приближающейся к нам Туманностью Андромеды, содержащей около 300 млрд звезд. Последствия такого столкновения трудно предсказать. В любом случае гравитационные силы будут вырывать звезды из взаимодействующих галактик, перераспределять их между собой, искажать формы звезд. Скопления галактик могут еще и распадаться; такой распад также длится миллиарды лет.
Со скоплениями галактик связана одна загадка, которая имеет фундаментальное значение для космологии, всей современной астрономической картины мира. Еще в 1930-е гг. был установлен «вириальный парадокс»: для многих скоплений масса (МВ), определенная по скоростям собственного движения в них галактик (согласно теореме вириала, доказанной еще в 1870 г. Р.Клаузиусом), оказывается заметно больше массы, определенной по общей светимости галактик (МС): МВ > МС. Долгое время этот парадокс пытались разрешить нестационарностью систем скоплений галактик. (На нестационарные системы теорема вириала не распространяется.) Но согласно современным представлениям галактические скопления все же стационарны. Это значит, что масса скоплений галактик оказывается некоторой загадкой: в скоплениях галактик помимо вещества самих галактик должна существовать еще значительная масса темной, или, как говорят, скрытой, материи. Масса такой скрытой материи, по новейшим оценкам, может доходить до 90% массы всего скопления!
Иначе говоря, около 90% материи нашей Вселенной является для нас невидимой! Вполне понятно, что значительные усилия астрономов и физиков прилагаются для разрешения этого парадокса. Если не удастся объяснить природу скрытой массы, то это может иметь самые радикальные последствия: привести к очередной глобальной революции в естествознании, потребует выработки качественно новых способов познания в астрономии и физике и т.д.
Природа скрытой массы объясняется по-разному. Астрономы считают, что «темное вещество» — это прежде всего множество невидимых нами темных холодных звезд и других компактных звездных объектов, включая нейтронные звезды, черные дыры; планетных систем (в которых основная масса сосредоточена в темных планетах типа Юпитера); потоков нейтрино, обладающих массой покоями, и др. Физики в большей мере склоняются к поиску (дополняющих астрономический список) новых элементарных частиц (аксионов, которыми объясняются некоторые свойства сильного взаимодействия; бозонов Хиггса (см. 10.3.3); частиц, образовавшихся в начальные моменты нашей Вселенной, и др.).
В связи с загадкой скрытой материи особое значение имеют полученные (в начале 2003 г.) данные рентгеновской астрономии о том, что Вселенная пронизана сетью раскаленного газа, нити которого протянулись на миллионы световых лет, проходя через скопления галактик, в том числе и через нашу Галактику. По предварительным оценкам, масса этого газа может превышать в пять раз суммарную массу всех звезд во Вселенной. Похоже, что загадка скрытой массы может быть разрешена без радикального изменения современных фундаментальных теорий.
11.6.4. Понятие Метагалактики. Совокупность галактик всех типов, квазаров, межгалактической среды образует Метагалактику — доступную наблюдениям часть Вселенной.
Одно из важнейших свойств Метагалактики — ее постоянное расширение, о чем свидетельствует «разлет» скоплений галактик. Доказательством того, что скопления галактик удаляются друг от друга, являются «красное смещение» в спектрах галактик и открытие реликтового излучения (фоновое внегалактическое излучение, соответствующее температуре около 2,7 К).
Из явления расширения Метагалактики вытекает важное следствие: в прошлом расстояния между галактиками были меньше. А если учесть, что и сами галактики в прошлом были протяженными и разреженными газовыми облаками, то очевидно, что миллиарды лет назад границы этих облаков смыкались и образовывали некоторое единое однородное газовое облако, испытывавшее постоянное расширение.
Другое важное свойство Метагалактики — равномерное распределение в ней вещества (основная масса которого сосредоточена в звездах). В современном состоянии Метагалактика — однородна в масштабе порядка 200 Мпк. Маловероятно, что она была такой в прошлом. В самом начале расширения Метагалактики неоднородность материи вполне могла существовать. Поиски следов неоднородности прошлых состояний Метагалактики — одна из важнейших проблем внегалактической астрономии.
Однородность Метагалактики (и Вселенной) надо понимать и в том смысле, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, и физические константы, по-видимому, с большой степенью точности одинаковы повсюду, т.е. те же, что и в нашей области Метагалакти-
ки, включая Землю. Типичная галактика, находящаяся в сотне миллионов световых лет от нас, выглядит в основном так же, как наша. Спектры атомов, следовательно, законы химии и атомной физики там идентичны известным на Земле. Это обстоятельство позволяет уверенно распространять открытые в земной лаборатории законы физики на более широкие области Вселенной.
Представление об однородности Метагалактики еще раз доказывает, что Земля не занимает во Вселенной сколько-нибудь привилегированного положения. Конечно, Земля, Солнце и Галактика кажутся нам, людям, важными и исключительными, но для Вселенной в целом они такими не являются.
Исчерпывает ли Метагалактика собой всю возможную материю? Многие ученые так и считают, утверждая единственность нашей расширяющейся Метагалактики — Вселенной. Но такие утверждения напоминают космологию Аристотеля, многократно повторявшиеся заявления о единственности Земли со светилами вокруг нее, единственности Солнечной системы, а также более поздние теории единственности нашей Галактики и т.д. И потому все чаще высказывается мысль о множественности «метагалактик», множественности вселенных, каждая из которых имеет свой собственный набор фундаментальных физических свойств материи, пространства и времени, свой тип нестационарности, организации и др. Эти гипотезы не противоречат современным математическим и физико-теоретическим представлениям. Более того, многие модели релятивистской космологии закономерно подводят к выводам такого рода [1].
1 См.: Розенталь И.Л. Проблемы начала и конца Метагалактики. М., 1985.
Одна из теоретических посылок для такого вывода связана с тем, что уравнения ОТО и квантовой физики не дают ответа на вопрос о начальных условиях эволюции нашей Вселенной. Здесь возможны два варианта:
+ первичное сингулярное состояние вещества из множества потенциальных физических возможностей реализовалось в одну реальную — нашу Метагалактику;
+ во Вселенной осуществляется все многообразие физических условий, явлений и движений, допускаемых основными физическими теориями.
Если допустить вторую возможность, то надо признать, что реально существует множество вселенных (метагалактик), образовавшихся в результате «Большого взрыва», связанных между собой некими материальными «каналами», о которых мы пока можем только догадываться (представления о топосах и др.) и для познания которых понадобится как минимум завершенная теория супергравитации, а может даже и некоторая «новая физика».
Таким образом, по нашим человеческим меркам галактики невообразимо огромны, но в космологических масштабах они ничтожно малы. Галактики разбросаны по Вселенной более или менее беспорядочно, однако они обычно собраны в группы. Подобные группы галактик — «атомы» космологии. Космология рассматривает поведение Вселенной лишь в масштабах такого или более высокого порядков. Процессы, происходящие в отдельных галактиках (хотя они могут быть очень важными), редко становятся существенными для космологии.
11.7. Вселенная в целом
11.7.1. Понятие релятивистской космологии. Вселенная как целое является предметом особой астрономической науки — космологии, имеющей древнюю историю. Истоки ее уходят в античность. Космология долгое время находилась под значительным влиянием религиозного мировоззрения, будучи не столько предметом познания, сколько делом веры. Даже И. Кант, пробивший в XVIII в. серьезную брешь в религиозном толковании предмета космологии, полностью не освободился от представления об активности сверхъестественного фактора — Творца материи.
Начиная с XIX в. космологические проблемы — не дело веры, а предмет научного познания. Они решаются с помощью научных понятий, представлений, теорий, а также приборов и инструментов, позволяющих понять, какова структура Вселенной и как она сформировалась. В XX в. был достигнут существенный прогресс в научном понимании природы и эволюции Вселенной как целого. Конечно, понимание этих проблем пока еще далеко от своего завершения, и, несомненно, будущее приведет к новым великим переворотам в принятых сейчас взглядах на картину мироздания. Тем не менее важно отметить, что здесь мы имеем дело именно с наукой, с рациональным знанием, а не с верованиями и религиозными убеждениями.
Современная космология — это сложная, комплексная и быстро развивающаяся система естественно-научных (астрономия, физика, химия и др.) и философских знаний о Вселенной в целом, основанная как на наблюдательных данных, так и на теоретических выводах, относящихся к охваченной астрономическими наблюдениями части Вселенной. Глубинная связь космологии и физики базируется на том, что космологи в современной Вселенной ищут «следы» тех процессов, которые происходили в момент рождения Вселенной. А такими «следами» прежде всего выступают фундаментальные свойства физического мира — три пространственных измерения и одно временное; четыре фундаментальных взаимодействия; преобладание частиц над античастицами и др. Эмпирические данные, представленные главным образом внегалактической астрономией, свидетельствуют о том, что мы живем в эволюционирующей, расширяющейся, нестационарной Вселенной.
Имеет ли смысл рассматривать Вселенную в целом как единый целостный динамический объект? Современная космология в основном исходит из предположения, что на этот вопрос следует ответить положительно. Иначе говоря, предполагается, что Вселенная в целом подчиняется тем же естественным законам, которые управляют поведением ее отдельных составных частей. При этом определяющую роль в космологических процессах играет гравитация.
Поскольку именно тяготение определяет взаимодействие масс на больших расстояниях, а значит, динамику космической материи в масштабах Вселенной, то теоретическим ядром космологии выступает теория тяготения, а современной космологии — релятивистская теория тяготения. Поэтому современную космологию называют релятивистской.
Ньютоновская физика рассматривает пространство и время как «арену», на которой разыгрываются физические процессы; она не связывает воедино пространство и время. Согласно общей теории относительности (см. 9.2), распределение и движение материи изменяют геометрические свойства пространства-времени и в то же время сами зависят от них; гравитационное поле проявляется как искривление пространства-времени (чем значительнее кривизна пространства-времени, тем сильнее гравитационное поле).
Первым релятивистскую космологическую модель попытался построить А. Эйнштейн. В соответствии с методологическими установками классической астрономии о стационарности Вселенной, он исходил из предположения о неизменности свойств Вселенной как целого во времени (радиус кривизны пространства он считал постоянным). Эйнштейн даже видоизменил общую теорию относительности, чтобы она удовлетворяла этому требованию, и ввел в основное уравнение дополнительную космическую силу отталкивания (λ), которая должна уравновесить взаимное притяжение звезд:
где Rik – тензор Риччи; R – его след; оба они являются функциями тензоров gik, их первых и вторых производных; Тik— тензор энергии-импульса; λ – константа, введенная Эйнштейном.
Вселенная Эйнштейна пространственно конечна; она имеет конечные размеры, но не имеет границ! В этой модели пространственный объем Вселенной с равномерно распределенными в нем галактиками конечен; но границ у этого пространства нет. Оно не распространено бесконечно во все стороны, а замыкается само на себя. Как и на поверхности сферы, в нем можно совершать «кругосветные» путешествия: обитатель такой вселенной мог бы, послав в каком-либо направлении (световой или радио) сигнал, со временем обнаружить, что этот сигнал вернулся к нему с противоположной стороны, обойдя всю Вселенную.
Как и многие другие абстрактные понятия современной физики и астрономии, идея замкнутой, конечной, но неограниченной вселенной трудно представима в наглядных образах. Поэтому часто спрашивают, что же находится «снаружи» конечной вселенной. Дело в том, что этот вопрос не имеет смысла для трехмерных существ, т.е. в пространственно-временной метрике нашего мира. Как не имеет смысла аналогичный вопрос, что находится «вне» поверхности сферы, для плоских существ, вынужденных постоянно жить на сферической поверхности. В такой вселенной просто нет понятия «снаружи». Ведь различение «снаружи» и «внутри» предполагает некоторую границу, которой на самом деле нет, и каждая точка в ней эквивалентна любой другой – ни края, ни центра здесь нет.
11.7.2. Нестационарная релятивистская космология. Возникновение релятивистской космологии было величайшим достижением естествознания XX в. Однако сразу после создания релятивистской космологии выяснилось, что многие ее основополагающие представления и понятия оставались в плену у классической физики, ньютоновской картины мира. Ощущалась потребность в радикальном разрыве с устаревшими космологическими представлениями. С критикой предложенной Эйнштейном космологической модели выступил наш отечественный выдающийся математик и физик-теоретик А.А.Фридман. Именно Фридман, опубликовавший свою работу в 1922 г., впервые сделал из общей теории относительности космологические выводы, имеющие поистине революционное значение: он заложил основы нестационарной релятивистской космологии.
Фридман показал, что Вселенная, заполненная тяготеющим веществом, не может быть стационарной и должна либо расширяться, либо сжиматься. Поэтому теоретическая модель Эйнштейна является лишь частным решением гравитационных уравнений для Вселенной в целом, а в общем случае решения зависят от времени. Кроме того, они не могут быть однозначными и не могут дать ответа на вопрос о форме Вселенной, ее конечности или бесконечности. Встретив решения Фридмана с большим недоверием, Эйнштейн затем убедился в его правоте и согласился с критикой молодого физика. Нестационарные решения уравнений Эйнштейна, основанные на постулатах однородности и изотропии, называются фридмановскими космологическими моделями.
В основе нестационарной релятивистской космологии лежат следующие положения и принципы. Во-первых, это уравнения общей теории относительности, связывающие кривизну пространства-времени с плотностью массы (энергии). Во-вторых, космологический постулат (представление однородности изотропности Вселенной: во Вселенной нет выделенных точек и направлений; все точки и направления равноправны). В-третьих, положение о том, что выбор той или иной модели определяется силами тяготения и начальными условиями (плотностью массы). На основании этих соображений решения космологических уравнений зависят прежде всего от средней плотности вещества во Вселенной р, ее отношения к критической плотности ρкр(ρкр = 3 H2 / 8πG, где Н – «постоянная Хаббла»), и приводят к трем моделям эволюции Вселенной (рис. 3).
Первая модель соответствует положению, когда средняя плотность вещества во Вселенной ниже критической (ρ < ρкр). В таком случае кривизна пространства отрицательная, скорость расширения не уменьшается, а Вселенная будет расширяться в бесконечность неограниченно долго (гиперболическое расширение).
Вторая модель характеризует ситуацию, когда средняя плотность равна критической (ρ = ρкр), а кривизна в пределе стремится к нулю. Это случай неограниченного параболического расширения, которое сопровождается постепенным уменьшением скорости расширения. И в первой и во второй модели расстояния между галактиками со временем неограниченно возрастают. И, наконец, третья модель соответствует положению, когда средняя плотность вещества выше критической (ρ > ρкр), а кривизна изменяется, отрицательная сменяется положительной. Это осциллирующая, пульсирующая модель, в которой период расширения неизбежно сменяется периодом сжатия.
Во всех моделях предусмотрено существование начального состояния эволюции – точки сингулярности О. В третьей модели две точки сингулярности – начальная сингулярность О и сингулярность O1, завершающая цикл эволюции Вселенной (t0 – современный период времени жизни Вселенной). Состояние вещества в момент сингулярности (исходная плотность стремится к бесконечности, радиус и время стремятся к нулю) и определяет взрывное расширение Вселенной.
Спустя лишь несколько лет после ее создания идеи нестационарной релятивистской космологии получили эмпирическое подтверждение. В 1929 г. американский астроном Э.Хаббл показал, что, судя по «красному смещению» спектров, далекие галактики удаляются от нас; и чем дальше галактика, тем быстрее она удаляется. Отсюда следовал однозначный вывод – Вселенная находится в состоянии расширения. Это открытие подтвердило идеи Фридмана и вместе с ними коренным образом изменило основания космологии.
Дата добавления: 2016-01-05; просмотров: 21; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!