Глобальный эволюционизм..549 34 страница



 

+ Эмпирическая основа современной астрономии — наблюдение во всеволновом диапазоне. Теоретические исследования и экспериментальные попытки регистрации гравитационных волн открывают перспективы развития гравитационной астрономии. Сведения о космосе несут космические лучи и нейтрино. Важная особенность наблюдений во внеоптических диапазонах состоит в том, что они дают информацию, как правило, о нестационарных процессах во Вселенной.

 

 

+ Теоретическая основа современной астрономии — не только классическая механика, но и релятивистская и квантовая механика, квантовая теория поля. Классическая механика не потеряла своего значения для астрономического познания (прежде всего, для объяснения процессов, происходящих в Солнечной системе). Как и прежде, все расчеты движений тел планетной системы и искусственных спутников Земли, Луны и планет, космических аппаратов, созданных человеком, осуществляются (в силу слабости релятивистских и квантовых эффектов для этих систем) на базе ньютоновской механики.

 

+ Физическая реальность состоит из трех качественно несводимых друг к другу уровней: микро-, макро- и мегамиров. В системе астрономического познания выделяются две большие подсистемы: во-первых, астрономические науки, изучающие закономерности космических тел и процессов макроуровня (небесная механика, астродинамика, астрометрия и др.); во-вторых, астрономические науки, изучающие космические процессы на уровне мегамира (внегалактическая астрономия, релятивистская космология и др.). Считается, что исследования носят космологический характер, если предмет изучения имеет линейные размеры, превышающие 109 пк; именно здесь проходит разграничительная линия между «обычным» астрономическим и космологическим масштабами.

 

В системе астрономического познания большую роль играет исследование закономерностей микромира, связанных с процессами излучения звезд, ранних этапов эволюции Вселенной и т.п., поэтому современная астрономия пользуется и аппаратом микрофизики (квантовая механика, квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика и др.). Вопрос о глубинных внутренних связях между микро-, макро- и мегамирами, о том, что на определенном уровне они представляют, собой некое (диалектическое) единство, также входит в поле зрения современной астрономии.

 

 

+ Вопрос о единственности Вселенной как объекта космологии в современной астрономии решается отнюдь не однозначно. Наряду с точкой зрения, что Вселенная как объект космологии — это наша Метагалактика в ее самых общих свойствах, существует мнение, что множество вселенных, порождаемых виртуальной «пеной» физического вакуума, могут сосуществовать друг с другом, а тезис об уникальности Вселенной должен рассматриваться как исторически относительный, определяемый уровнем практики.

 

Хотя эмпирических данных, подтверждающих представление о множественности вселенных, пока нет (более того, проблематична даже та конкретная логико-гносеологическая форма, в которой такой эмпирический базис может быть зафиксирован), тем не менее такое представление вытекает из принципов инфляционной космологии.

 

 

+ Претерпеваютзначителъные изменения трактовки сущности пространства и времени. С одной стороны, современная астрономия опирается на общую теорию относительности, в соответствии с которой пространственно-временные характеристики перестают быть фундаментальными, не зависимыми ни от чего понятиями физики. Геометрические характеристики тел, их поведение и ход часов зависят прежде всего от гравитационных полей, которые в свою очередь создаются материальными телами. Важное значение имеет то обстоятельство, что в релятивистской физике такая характеристика, как «конечность-бесконечность», является вариантом (относительной величиной), значит, противопоставление конечности и бесконечности относительно — конечность пространства в одной системе не исключает его бесконечности в другой. Более того, относительны не только «конечность-бесконечность», но и топологические характеристики пространства-времени. Это значит, что метрический и континуальный характер пространства-времени в нашей Вселенной относителен и возможны пространственно-временные организации вещества и поля с иными топологическими характеристиками.

 

С другой стороны, инфляционная космология допускает на ранних стадиях эволюции Вселенной раздувание физического вакуума со скоростью, на много порядков превышающей скорость света; стадия раздувания физического вакуума, наполненного скалярным полем, осуществляется без присутствия вещества и излучения, которые к тому времени еще не образовались.

 

 

+ Современная астрономия теоретически и эмпирически обосновывает идею нестационарности Вселенной: мир астрономических объектов находится в состоянии постоянного качественного изменения, развития. Идея развития пронизывает всю современную астрономию. Эта идея носит не умозрительный характер, а воплощается в конкретных астрофизических и космологических моделях.

 

Общая идея о нестационарности Вселенной (пространственной и структурной) конкретизируется в следующих методологических установках:

 

во-первых, развитие космических тел рассматривается диалектически — со взрывами, скачками, перерывами постепенности; при этом учитывается многообразие путей развития, включая моменты нисходящего, регрессивного движения;

 

во-вторых, в качестве факторов, определяющих процесс развития космических тел, рассматриваются все четыре известных сейчас фундаментальных взаимодействия; прибегать ко всем четырем приходится в моделировании начальных стадий эволюции Вселенной, вблизи сингулярности; в масштабах Метагалактики решающая роль принадлежит силе тяготения;

 

в-третьих, признается необходимость доведения теоретического описания астрономического объекта и его эволюции до выделения его индивидуальных черт, поскольку астрономические объекты даже одного типа (например, звезды или даже звезды определенного класса) имеют заметные индивидуальные различия (масса, светимость, химический состав, температура и др.).

 

+ Современная астрономия исходит из установки о космогоническом смысле (прямом или опосредованном) любой астрономической проблемы. Именно космогонический аспект исследования Вселенной начинает все больше выступать в виде того организующего центра, который объединяет различные разделы дифференцировавшейся астрономической науки.

 

+ В современной неклассической астрономии (так же, как и в классической) нет свободы выбора условий наблюдения. Современная астрономия осознает зависимость результата наблюдения от условий, в которых находится наблюдатель. Но в отличие от классической современная астрономия не во всех случаях допускает возможность пренебречь этой зависимостью или внести в нее поправку. В современной астрономии на эмпирическом уровне познания возра-

 

 

стает роль субъекта. Так, при объяснении с помощью общей теории относительности космологических явлений (искривленного пространства-времени) необходимо пользоваться классическими понятиями для описания содержания эксперимента с излучением от удаленных объектов, поскольку он происходит в однородной и изотропной локальной области плоского пространства-времени. Это описание условий эксперимента не может быть элиминировано в окончательном результате исследования.

 

+ Резкое возрастание теоретической активности субъекта современного астрономического познания. Современная астрономия (как и «неклассическая» физика) отвергает классический идеал абсолютного описания, согласно которому в рамках одной теории можно достичь исчерпывающего описания закономерностей и свойств мира астрономических объектов. В системе теоретического описания структуры и эволюции Вселенной необходима не одна, а множество теоретических моделей.

 

+ Изменяемость структуры познавательной деятельности в астрономии — одна из новых методологических установок. Принципы и способы познавательной деятельности в развитии астрономии периодически изменяются. Эпохи, когда происходят такие изменения, — это эпохи научных революций в астрономии.

 

Итак, методологические установки современной астрономии существенно отличаются от методологических установок классической астрономии (см. 7.2.5).

 

Такая смена методологических установок позволяет сделать вывод о том, что в XX в. в астрономии произошла научная революция, которая привела к изменению способов астрономического познания и астрономической картины мира.

 

 

СОВРЕМЕННАЯ БИОЛОГИЧЕСКАЯ КАРТИНА МИРА

 

12. ПУТИ РАЗВИТИЯ И ПРИНЦИПЫ БИОЛОГИИ XX в.

 

В XX в. динамичное развитие биологического познания привело к открытию молекулярных основ живого. Наука непосредственно приблизилась к решению величайшей проблемы — раскрытию сущности жизни. Решена величайшая задача органического мира и важнейшая проблема биологии — объяснено явление наследственности. Усилиями молекулярной биологии расшифрован генетический код, осуществляется синтез генов. Биотехнологии революционизируют производительные силы общества, сельскохозяйственное производство, медицину. А генная инженерия открывает перед человечеством и вовсе неожиданные, удивительные, а подчас и настораживающие перспективы: клонирование животных и человека, создание генетически новых форм живого. Это определяет возрастание ответственности ученых-биологов за будущее нашей планеты, ее биосферы, за судьбы человечества.

 

Радикально изменились и сама биология, и ее место, роль в системе наук, отношение биологической науки и практики. Биология постепенно становится лидером естествознания.

 

 

12.1. Рождение генетики как науки

 

12.1.1. Успехи экспериментальной генетики. Вступление в XX в. ознаменовалось в биологии бурным развитием экспериментальных исследований явлений наследственности и зарождением генетики как науки. Важнейшим исходным событием явилось переоткрытие законов Менделя в 1900 г. (независимо тремя учеными — X. Де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии). В том же году была обнаружена и забытая, опередившая свое время работа Г. Менделя. Это говорит о том, что только в начале XX в. биология поднялась до уровня понимания открытия Менделя и рождения генетики как науки.

 

 

Далее последовала лавина эмпирических открытий и построение различных теоретических моделей. Большое число биологов разных специальностей (зоологов, ботаников и др.) после переоткрытия законов Менделя обратились к проблемам генетики и начали проводить генетические эксперименты на разных объектах, как растительных, так и животных (очень удобным объектом оказалась плодовитая мушка дрозофилы, имеющая всего четыре пары хромосом). За относительно короткий срок (20—30 лет) в учении о наследственности был накоплен колоссальный эмпирический и теоретический материал:

 

+ открыт дискретный характер наследственности;

+ обосновано представление о гене и хромосомах как носителях генов [1];

+ получено представление о линейном расположении генов;

+ доказано существование мутаций и возможность вызывать их искусственно;

+ установлен принцип чистоты гамет, законов доминирования, расщепления и сцепления признаков;

+ разработаны методы гибридологического анализа, чистых линий (генотипически однородного потомства) и инцухта, крос-синговера (нарушение сцепления генов в результате обмена участками между хромосомами);

+ получен вывод о том, что исходный материал для селекции должен быть генетически гетерогенным.

 

1 Понятия гена, генотипа, фенотипа были введены в биологию датским ученым В.Л. Иогансеном.

 

 

Все эти и другие открытия были экспериментально подтверждены, строго обоснованы.

 

В России станоатение генетики происходило несколько позже. Впервые университетский курс генетики был прочитан в 1913 г. Ю.А. Филипченко. Обширная и оригинальная сводка Е.А. Богданова по менделизму появилась в 1914 г. В 1920—1930-е гг. отечественная генетика развивалась широким фронтом, высокими темпами и достигла выдающихся результатов.

 

 

 

12.1.2. Хромосомная теория наследственности. Интенсивные экспериментальные исследования и фронтальное накопление эмпирического материла в первой четверти XX в. дали импульс разработке теоретических аспектов генетики.

 

Зарождающейся генетике (в форме менделизма) следовало прежде всего концептуально определиться по отношению к дарвинизму. Этот процесс был трудным и противоречивым. С одной стороны, «ортодоксальные дарвинисты» (А.Уоллес, Е. Паульсон, В.Уэлдон и др.), делавшие акцент на непрерывности эволюции в виде индивидуальных изменений (именно в них они усматривали материал для естественного отбора), не понимали, что менделизм может дать научные идеи, которые способны расширить, углубить, конкретизировать понятия дарвинизма.

 

С другой стороны, в общем контексте кризиса дарвинизма на рубеже XIX—XX вв. (см. 8.3.1) многие его критики попытались использовать менделизм в целях антидарвинизма, призывали полностью пересмотреть дарвинизм и заменить эволюцию мутационной теорией. По этому пути пошел, например, Хуго Де Фриз, считавший, что новый вид создается не путем постепенного перехода от старого вида к новому, а скачком, в результате мутаций у большинства особей исходного вида. Для образования нового вида не нужны борьба за существование и естественный отбор. Фриз не признавал внутривидового естественного отбора как творческий фактор эволюции и полагал, что возможен только межвидовой отбор как выбраковщик не особей, а видов.

 

Основная теоретико-методологическая установка попыток замены дарвинизма мутационными концепциями — автогенез, т.е. образование видов, осуществляемое исключительно за счет внутренних (мутационных) факторов и не требующее участия внешней среды. Крайним выражением такой позиции был генетический преформизм, согласно которому эволюция осуществляется как преформистское развертывание некоего комплекса наследственных факторов (генов). Так, У. Бэтсон, один из основателей генетики, учитель Н.И. Вавилова, считал, что эволюция состоит не в изменении генов под влиянием среды, а в выпадении генов, накоплении генетических утрат. Эта позиция вела к парадоксальному выводу: чем проще организм, тем генетически он сложнее.

 

 

Генетика не опровергала дарвинизм, наоборот, становилось все более очевидно, что генетика дополняет дарвинизм и восполняет главный его пробел, т.е. объясняет сущность неопределенной изменчивости. Вершиной теоретического обобщения накопленного генетикой эмпирического материала в первые десятилетия XX в. стала хромосомная теория наследственности.

 

Основу этой теории составляет ряд ключевых обобщений: во-первых, наследственный фактор локализован в хромосомах клеток; во-вторых, преемственность наследственных свойств организма определяется преемственностью хромосом; в-третьих, для нормального развития особи необходимо наличие всех хромосом, присущих данному виду; в-четвертых, в клетках тела (сомы) содержится диплоидный набор хромосом (один — от отца, другой — от матери); в мейозе (особый способ деления клетки) происходит уменьшение (редукция) числа хромосом и переход клеток из диплоидного в гаплоидное состояние, свойственное зародышевым клеткам.

 

Эти обобщения конкретизируются в следующих утверждениях:

+ хромосома состоит из генов;

+ гены расположены в хромосоме в линейном порядке;

+ ген — неделимая корпускула наследственности, ее «квант»; в мутациях ген изменяется как целое;

+ гены, локализованные в пределах одной хромосомы, составляют одну группу сцепления и передаются совместно, поэтому признаки, зависящие от сцепления генов, наследуются совместно;

+ сцепленное наследование признаков может нарушаться за счет перекреста хромосом (кроссинговера), ведущего к перераспределению генетического материала между гомологичными хромосомами.

 

 

Непосредственно основания хромосомной теории наследственности разрабатывались (1902—1907) Т. Бовери, У. Саттоном, а завершенная полная формулировка дана в работах Т.Х. Моргана и его школы (А.Г. Стёртевант, Г.Дж. Меллер, К. Бриджес и др.), удостоенных за разработку этой теории Нобелевской премии. Эта теория стала стартовой площадкой теоретической генетики. На ее принципах и понятиях базировался дальнейший теоретический анализ структуры генов, роли нуклеиновых кислот в передаче наследственных признаков, зависимости проявления гена от места его положения в хромосоме и т.д.

 

 

 

12.2. Синтетическая теория эволюции: первый синтез дарвинизма и генетики

 

12.2.1. Создание синтетической теории эволюции. Хромосомная теория наследственности не снимала противоречий между дарвинизмом и генетикой. (Собственно говоря, такая задача перед ней и не стояла.) Важнейшим шагом на пути их преодоления явилось создание синтетической теории эволюции — первого глубокого синтеза классического дарвинизма, генетики, систематики, палеонтологии, экологии. Он привел к качественному скачку в развитии биологического знания, к переходу биологии с классического на неклассический уровень познания.

 

Принципиальные и концептуальные положения синтетической эволюции были заложены трудами С.С. Четверикова (1926), Р.Фишера, Н.В. Тимофеева-Ресовского, С. Райта, Н.П. Дубинина, Дж. Холдейна (1929—1932) и др. Свое развитие она получила в трудах таких выдающихся биологов XX в., как Н.И. Вавилов, И.И. Шмальгаузен, Э. Майр, Дж. Симпсон, Дж. Хаксли, Ф.Г. Добжанский и др. Непосредственными предпосылками создания теории выступали: хромосомная теория наследственности; традиция разработки биометрических и математических подходов в решении проблем генетики и эволюции, в частности закон Харди—Вайнберга (1908) для идеальной популяции (гласящий, что такая популяция — совокупность особей одного вида, населяющих определенную территорию, более или менее изолированную от соседних совокупностей того же вида, стремится сохранить равновесие концентрации генов при отсутствии факторов, изменяющих его) [1], результаты эмпирических исследований изменчивости в природных популяциях и т.д.

 

1 В 1935 г. А.Н. Колмогоров уточнил этот закон и показал, что самые большие изменения генотипического состава популяции наблюдаются не в случае малых или больших изолятов, а в случае полуизолированных популяций, между которыми периодически возникают потоки генов.

 

 

 

Идейные основы синтетической теории эволюции сложились в научной школе С.С. Четверикова, который еще в 1905 г. обратил внимание на то, что периодические колебания численности особей вида («волны жизни») могут влиять на направление и интенсивность естественного отбора. В 1921 — 1929 гг. организованный Четвериковым научный коллектив провел исследования мутаций в природных популяциях. Эти исследования показали, что мутационный процесс происходит в природных популяциях; популяция обладает общим генофондом, который насыщен разными мутациями, и по мере старения вида в нем накапливается все больше мутаций (при этом признаки вида расшатываются); полная изоляция популяции и естественный отбор приводят к образованию нового вида. Работы Четверикова и его школы стали основанием науки о генетике природных популяций, синтетической теории эволюции, идей популяционного мышления в биологии, революционных по своей сути.

 

Формирование синтетической теории эволюции ознаменовало переход к популяционной концепции, сменившей организмо-центрическую, начало преодоления противопоставления исторического и структурно-инвариантного «срезов» в исследовании живого, интеграцию биологии на базе дарвинизма (в России — Н.И. Вавилов, И.И. Шмальгаузен, А.Н. Северцов, разработавший учение о главных направлениях биологического процесса — аромофозе и идиоадаптации, и др.). Это открыло качественно новый этап в развитии биологии — переход к созданию единой системы биологического знания, воспроизводящей законы развития и функционирования органического мира как целого.

 

12.2.2. Принципы и понятия синтетической теории эволюции. Рассмотрим детальнее принципы и понятия синтетической теории эволюции, доказательно моделирующей протекание эволюционного процесса, который представляет собой «векторизированный, направленный процесс изменения дискретных форм живых организмов на Земле. Он характеризуется адаптациями к абиотической и биотической среде, связанными с ними усложнением и дифференцировкой в онтогенезах живых организмов и как результат последних эволюционным прогрессом» [1].

 

1 Тимофеев-Ресовский Н.В., Воронцов Н.Н., Яблоков А.В. Краткий очерк теории эволюции. М., 1977. С. 58.

 

 

 

Синтетическая теория эволюции строится на следующих принципах и понятиях:

 

+ элементарной «клеточкой» биологической эволюции является не организм, не вид, а популяция. Именно популяция — та реальная целостная система взаимосвязи организмов, которая обладает всеми условиями для саморазвития, прежде всего способностью наследственного изменения в системе биологических поколений. Популяция — это элементарная эволюционная структура. Через изменение ее генотипического состава осуществляется эволюция вида;

 

+ элементарный эволюционный материал — это мутации (мелкие дискретные изменения наследственности), обычно случайно образующиеся. В настоящее время выделяют генные, хромосомные, геномные (изменения числа хромосом и др.), изменения внеядерных ДНК и др.;

 

+ наследственное изменение популяции в каком-либо определенном направлении осуществляется под воздействием элементарных эволюционных факторов, таких как: мутационный процесс, поставляющий элементарный эволюционный материал; популя-ционные волны (колебания численности популяции в ту или иную строну от средней численности входящих в нее особей); изоляция (закрепляющая различия в наборе генотипов и способствующая делению исходной популяции на несколько новых, самостоятельных популяций); естественный отбор.

 

Естественный отбор — ведущий эволюционный фактор; именно он направляет эволюционный процесс. Отбор действует на всех стадиях онтогенеза особей данного вида. Существуют разные формы естественного отбора: движущий — благоприятствующий лишь одному направлению изменчивости, когда происходит дивергенции дочерних форм; дизруптивный — разрывающий, благоприятствующий двум или нескольким направлениям изменчивости; стабилизирующий — благоприятствующий сохранению в популяции оптимального фенотипа и действующий против проявлений изменчивости.

 

Таким образом, популяции являются подвижными динамическими системами, испытывающими непрерывное и неравновесное воздействие мутационного процесса, флуктуаций численности («волн жизни»), полной или частичной изоляции, естественного отбора. В разные периоды жизни в популяции может изменяться степень активности этих факторов, проявляться доминантное давление того или иного из них. Каждая популяция обладает «мобилизационным резервом внутривидовой изменчивости», который включается эволюционными факторами, выполняющими при этом роль пусковых механизмов эволюции. Реализации возможностей такого резерва приводят к появлению внутрипопуляционного полиморфизма, а затем и к возникновению нового вида.

 

 

 

12.2.3. Микроэволюция и макроэволюция. Эволюционные процессы в биологии в зависимости от их масштаба принято разделять на два типа: микроэволюция и макроэволюция.

 

Микроэволюция — это совокупность эволюционных процессов, протекающих в популяциях и приводящих к образованию нового вида. Описание микроэволюции дается синтетической теорией эволюции. Объектом теории выступают прежде всего закономерности эволюции вида как генетически целостной и замкнутой системы, состоящей из популяций. (Целостность вида обеспечивается возможностью скрещивания и потоком генов между разными популяциями.)

 

Макроэволюция — эволюционные процессы, ведущие к образованию таксонов более высокого ранга, чем вид (род, семейство, отряд, класс и др.).

 

Понимание отношений между микро- и макроэволюцией предполагает наличие четкого ответа на вопрос: можно ли свести закономерности макроэволюции к закономерностям микроэволюции. Иначе говоря, является ли синтетическая теория эволюции лишь теорией микроэволюции, или она одновременно объясняет и макроэволюцию.

 

На этот вопрос пытаются ответить со времени создания синтетической теории эволюции. Одна группа биологов (а их большинство) исходила (и исходит) из того, что макроэволюция не имеет специфических закономерностей и механизмов и реализуется посредством процессов микроэволюции, их накопления, являясь лишь их результирующим выражением. Просто более высокие таксоны образовываются на основе отношений межвидовой конкуренции, которые изменяют направление действия элементарных эволюционных факторов. Это значит, что синтетическая теория эволюции является и теорией макроэволюции. И если некоторым явлениям макроэволюции (паралеллизм, конвергенция, аналогия и гомология и др.) она не дает удовлетворительных объяснений, то со временем они будут получены.

 

 

Другая группа биологов (во главе с Р. Гольдшмидтом) исходила (и исходит) из того, что закономерности и механизмы макроэволюции не сводимы к механизмам и закономерностям микроэволюции. Макроэволюция должна осуществляться через макромутации — такие мутации, которые дают организму данного вида признак, свойственный таксонам более высокого ранга, т.е. мутации, как бы порождающие «монстров». Это значит, что синтетическая теория эволюции имеет не всеобъемлющий характер, является лишь теорией микроэволюции, а теория макроэволюции еще должна быть создана. Иначе говоря, на смену первому синтезу эволюционной теории и генетики, который завершился созданием синтетической теории эволюции, должен прийти второй, более широкий их синтез, снимающий противоречия между микро- и макроэволюцией.

 

Необходимость в этом определяется еще рядом обстоятельств.

 

Во-первых, синтетическая теория эволюции описывает эволюционный процесс лишь для высших животных и растительных организмов, характеризующихся половым размножением (или, как говорят биологи, для высших бисексуальных диплоидных организмов). За пределами синтетической теории эволюции осталось громадное количество видов (например, партеногенетические формы, при которых половые клетки развиваются без оплодотворения). А если рассматривать всю историю жизни на Земле, то среди вымерших видов таких, которые не охватываются синтетической теорией эволюции, даже больше, чем ныне живущих (поэтому в области палеонтологии эффективность синтетической теории эволюции оказывается недостаточной).

 

Во-вторых, синтетическая теория эволюции сформировалась еще до возникновения молекулярной генетики, до революции в молекулярной биологии, которая позволила непосредственно раскрыть структуру гена и освоить способы прямого воздействия на него. В настоящее время специалисты бурно обсуждают вопрос о том, требуют ли эти новые открытия пересмотра синтетической теории эволюции, ее принципов и понятий; а если требуют, то в какой степени такой пересмотр должен быть осуществлен.

 

В-третьих, эволюция — безусловно многофакторный и многокомпонентный процесс, охватывающий множество связей и отношений органических форм. Познание такого множества связей — задача длительного исторического периода развития биологии, в том числе и задача биологии XXI в. Таким образом, можно утверждать, что современная биология движется к новому (и, наверное, не последнему) синтезу теории эволюции и (уже молекулярной) генетики.

 

 

Несколько слов скажем о непростой судьбе отечественной генетики. Синтетическая теория эволюции создавалась усилиями интернационального коллектива ученых. Выдающуюся роль в формировании этой теории играли представители российской науки, и ее зарождение — яркая страница отечественной биологии, генетики. Но, к сожалению, в истории отечественной биологии, прежде всего генетики, было много мрачного и трагического. В условиях тоталитарного общества политике и идеологии подчиняется буквально все, вплоть до личной жизни человека, и тем более сфера научной деятельности — очень важная часть общественной жизни. В таком обществе активность ученых оценивается не по результатам поиска истины, а по их воздействию на идеологию, массовое сознание, политику, познание истины заменяется провозглашением идеологических лозунгов. Значение (а нередко и само существование) той или иной научной школы зависит не от полученных научных результатов, а от личных связей и контактов ее руководителей с «вождями народа», которые зачастую не обладают достаточными знаниями и не могут объективно оценивать деятельность ученых. И если власть и наука вступают в конфликт, то власть сначала побеждает насилием, но со временем эта победа становится ее позором.


Дата добавления: 2016-01-05; просмотров: 21; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!