Глобальный эволюционизм..549 28 страница



 

 

При энергии более 1014—1016 ГэВ, или на расстояниях менее 10-29 см, сильное, слабое и электромагнитное взаимодействия описываются единой константой, т.е. имеют общую природу. Кварки и лептоны здесь практически не различимы, а глюоны, фотоны и векторные бозоны W± и Z° являются квантами калибровочных полей с единой калибровочной симметрией. Ведь если электрослабое и сильное взаимодействия в действительности представляют собой лишь две стороны Великого единого взаимодействия, то последнему также должно соответствовать калибровочное поле с некоторой сложной симметрией. Она должна быть достаточно общей, способной охватить все калибровочные симметрии, содержащиеся и в квантовой хромодинамике, и в теории электрослабого взаимодействия. В то же время ее спонтанное нарушение должно приводить к разделению электрослабого и сильного взаимодействия. Отыскание такой симметрии — главная задача на пути создания единой теории электрослабого и сильного взаимодействия.

 

Существуют разные подходы, порождающие конкурирующие варианты теорий Великого объединения. Тем не менее все эти гипотетические варианты Великого объединения имеют ряд общих особенностей. Во-первых, во всех гипотезах кварки и лептоны — носители электрослабого и сильного взаимодействий — включаются в единую теоретическую схему. До сих пор они рассматривались как совершенно различные объекты. Во-вторых, привлечение абстрактных калибровочных симметрии приводит к открытию новых типов полей, обладающих новыми свойствами, например способностью превращать кварки в лептоны.

 

В простейшем варианте теории Великого объединения для превращения кварков в лептоны требуется 24 поля, причем 12 из квантов этих полей уже известны: фотон, две W-частицы, Z°-частица и восемь глюонов. Остальные 12 квантов — новые сверхтяжелые промежуточные бозоны, объединенные общим названием Х- и Y-частицы (обладающие цветом и электрическим зарядом). Эти кванты соответствуют полям, поддерживающим более широкую калибровочную симметрию и перемешивающим кварки с лептонами. Следовательно, Х- и Y-частицы могут превращать кварки в лептоны (и наоборот).

 

О прямом экспериментальном обнаружении Х- и Y-бозонов речь пока не идет. Ведь теории Великого объединения имеют дело с энергией частиц выше 1014 ГэВ. Это очень высокая энергия. Трудно сказать, когда удастся получить частицы столь высоких энергий в уско-

 

 

рителях. В обозримом будущем такая возможность не предусматривается. Современные ускорители с трудом достигают энергии 100 ГэВ. И потому основной сферой проверки теорий Великого объединения являются ее следствия (для космологии и для низкоэнергетических областей). Так, без теорий Великого объединения невозможно описать раннюю стадию эволюции Вселенной, когда температура первичной плазмы достигала 10 27К. Именно в таких условиях могли рождаться и аннигилировать сверхтяжелые бозоны Х и Y.

 

Кроме того, на основе теорий Великого объединения предсказаны две важные закономерности в низкоэнергетических областях, которые могут быть проверены экспериментально. Во-первых, кварк-лептонные переходы должны вызывать распады протона. Это означает его нестабильность: время жизни протона должно составлять примерно 1031 лет. Во-вторых, неизбежным следствием этих теорий является существование магнитного монополя — стабильной и очень тяжелой (108 массы протона) частицы, несущей в себе один магнитный полюс. Экспериментальное обнаружение распада протона и магнитных монополей могло бы стать веским доводом в пользу теорий Великого объединения. На проверку этих предсказаний направлены усилия экспериментаторов. Обнаружение распада протона будет самым великим физическим экспериментом XXI в.! Но пока еще твердо установленных данных на этот счет нет.

 

 

10.3.6. Супергравитация. Но объединение трех из четырех фундаментальных взаимодействий — это еще не единая теория в полном смысле слова. Ведь остается еще гравитация. Теоретические схемы, в рамках которых объединяются все известные типы взаимодействий (сильное, слабое, электромагнитное и гравитационное), называются моделями супергравитации. Теоретические модели, в которых объединяются все четыре взаимодействия (супергравитация) базируются на идее суперсимметрии, т.е. такого перехода от глобальной калибровочной симметрии к локальной, который бы позволил переходить от фермионов (носителей субстрата материи) к бозонам (носителям структуры материи, переносчикам взаимодействий), и наоборот.

 

Поэтому супергравитация — это теория не только переносчиков всех фундаментальных взаимодействий, но и частиц, из которых состоит вещество (кварков и лептонов). В супергравитации все они объединяются в единой теории материи (вещества и поля). Одна из теоретических моделей сводит воедино 70 частиц со спином 0; 56 частиц со спином 1/2; 28 частиц со спином 1; 8 частиц по спином 3/2 (их назвали гравитино) и 1 частица со спином 2 (гравитон). Все эти частицы образовались в первые мгновения нашей Вселенной.

 

 

Супергравитация — это кульминация теоретической физики, та самая общая и абстрактная теория, которая венчает собой длительный и напряженный, а часто и драматический поиск единства физики. На уровне суперсимметрии появляется необходимость обоснования абстрактных симметрий калибровочных полей. Иначе говоря, вновь возникает необходимость обоснования физики геометрией (см. 9.2.3), в частности, представления калибровочных полей как геометрических симметрий, связанных с дополнительными измерениями пространства. Это привело к возрождению идей многомерности нашего мира.

 

Появляются модели суперсимметрии, в которых наш мир рассматривается как 11-мерное (или 10-мерное, или даже 26-мерное) пространство-время. Из 11 измерений только четыре проявляются в нашем мире, а остальные 7 остались скрученными, замкнутыми. Эти «скрытые измерения» существуют в масштабе r =10-33 см. Для проникновения в такие масштабы необходима энергия, сравнимая со всей энергией нашей Галактики! Разумеется, проекты проникновения в такие мельчайшие области нашего мира в обозримом будущем для человечества нереальны. (Возможно, они нереальны и в принципе.)

 

Несомненным достоинством и свидетельством перспективности программы супергравитации является то, что под ее влиянием сложился новый подход к объединению фундаментальных взаимодействий — теория суперструн. В этой теории частица рассматривается как струна — колебательная система с распределенными параметрами. При низких энергиях струна ведет себя как частица, а при высоких — в описания движения струны нужно вводить параметры, характеризующие ее вибрацию. Математическая сторона теории суперструн оказывается проще, чем в стандартной теории: исчезают нежелательные бесконечности. Одно из важных космологических следствий теории суперструн — возможность множественности вселенных, в каждой из которых существует свой набор фундаментальных взаимодействий.

 

 

Итак, подведем некоторые итоги. Объединение фундаментальных взаимодействий по существу началось еще в XIX в. с синтеза электричества и магнетизма в теории электромагнитного поля Максвелла. Попытки синтеза гравитации и электромагнетизма, предпринятые А. Эйнштейном в «единой теории поля», не удались. Зато теоретическое объединение слабого и электромагнитного взаимодействий получило надежное подтверждение в 1983 г. благодаря экспериментальному обнаружению W- и Z-бозонов. Твердо обоснованных данных, подтверждающих Великое объединение (распад протона, существование магнитного монополя), пока нет, но их ожидают. Программа супергравитации — яркий пример того, как теория может значительно опередить практику, опыт, возможности эксперимента. Но и здесь можно ожидать косвенных эмпирических обоснований моделей супергравитации данными внегалактической астрономии, астрофизики и космологии. Таким образом, физика стоит на пороге создания единой теории материи, т.е. всех фундаментальных взаимодействий (поля) и структуры вещества. Возможно, что уже в первой половине XXI в. эта величайшая задача всей истории науки будет решена. В определенном смысле это означает конец физической науки как познания фундаментальных оснований материи.

 

Правда, на этом пути предстоит решить еще много серьезных задач. Так, надо убедиться в существовании ряда элементарных частиц, которые предсказываются современной теорией (прежде всего, бозонов Хиггса). Кроме того, должна быть создана квантовая теория гравитации, без которой реализация программы суперсимметрии невозможна. Только с созданием квантовой теории гравитации, по-видимому, можно будет ответить на следующие вопросы: почему наше пространство трехмерно, а время одномерно? почему существует только четыре фундаментальных взаимодействия, и именно те, которые мы имеем? почему нам дан именно такой набор элементарных частиц? чем определяется масса элементарных частиц? почему мировые константы имеют именно такие, а не иные значения? почему в природе существует элементарный электрический заряд и от чего зависит его величина? почему столь мала масса нейтрино? и др.

 

Многое в решении этих задач будет зависеть от возможностей эксперимента в области физики элементарных частиц. Нынешние ускорители (коллайдеры), в которых сталкиваются разгоняющиеся навстречу друг другу сгустки элементарных частиц (электроны, протоны и др.), обеспечивают энергию сталкивающихся

 

 

частиц около 200 ГэВ. Обсуждаются проекты ускорителей, повышающих эту энергию на 2—3 порядка. Но технические возможности здесь не беспредельны. Повышение энергии требует создания сильных энергетических полей. А этому есть свой предел, ведь очень сильные поля будут разрушать атомы любого вещества; это значит, что в таком поле ускоритель сам себя будет разрушать! Сейчас обсуждаются проекты создания ускорителей, использующих нанотехнологии, которые позволяют быстро регенерировать разрушенные сильным электромагнитным полем ячейки материала. Выполнение такой программы, если это вообще реально, — дело очень далекого будущего. Правда, остается возможность изучать космические лучи (потоки нейтрино, гравитоны и др.) с высокой энергией. Для этого нужно научиться их уверенно регистрировать. Однако не исключены и другие варианты развития физики XXI в. Наука всегда должна быть готова к революционным поворотам. И потому, например, открытие новых фундаментальных взаимодействий, субкварковых частиц и др. может потребовать кардинального пересмотра современной (релятивистской и квантовой) физики, поставить на повестку дня вопрос о создании принципиально «новой физики». Много необычного и неожиданного несет для познания физического мира та область, где Микромир оказывается связанным с Мегамиром, ультрамалое с ультрабольшим, элементарная частица со Вселенной в целом, физика с астрономией.

 

 

СОВРЕМЕННАЯ АСТРОНОМИЧЕСКАЯ КАРТИНА МИРА

 

11. ОСОБЕННОСТИ АСТРОНОМИИ XX в.

 

В XX в. в астрономии произошли поистине радикальные изменения. Прежде всего значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 1920— 1930-х гг. в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло «теоретический горизонт» астрономических исследований. Кроме того, радикально изменился эмпирический базис астрономии — она стала всеволновой.

 

 

11.1. Изменения способов познания в астрономии XX в.

 

Общая теория относительности дала возможность разрешить парадоксы ньютоновской космологии (см. 8.2.1), сформулировать конкретное представление о предмете космологии (физико-геометрические свойства Вселенной как целого), создать теоретические модели явлений галактических и космологических масштабов. По сути ОТО впервые поставила космологию — эту важную отрасль астрономии — на твердую научную почву.

 

Создание квантовой механики обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических характеристик, послужило мощным импульсом развития как астрофизики, так и космогонического аспекта астрономии (в частности, построения теории строения звезд, источников энергии и механизмов эволюции звезд, звездных систем и др.).

 

 

Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Уже в первой трети XX в. с созданием новых более мощных телескопов и разработкой более совершенных методов спектроскопии был открыт грандиозный мир галактик, получила мощный импульс внегалактическая астрономия (Э.Хаббл), кардинально продвинулись исследования в области звездной астрономии, что дало возможность выяснить эмпирические зависимости между параметрами звезд (диаграмма Герцшпрунга—Рессела) и др. Еще более радикальные изменения в эмпирическом базисе астрономии произошли во второй половине XX в. Если в классической астрономии существовал по сути один узкий канал получения информации об астрономических объектах — видимый свет (наблюдения невооруженным глазом, оптический телескоп), то во второй половине XX в. и в начале XXI в. получение такой информации осуществляется по четырем каналам.

 

Во-первых, это электромагнитные волны, причем не только в оптическом диапазоне. Астрономия стала всеволновой. Это значит, что наблюдения проводятся на всех диапазонах электромагнитных волн (радио, инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма-диапазоны). В настоящее время свыше 60% информации о космических объектах и процессах несут в себе внеоптические диапазоны электромагнитных волн, начиная с самых длинных радиоволн и заканчивая самым коротким гамма-диапазоном. Очень велико значение информации, которую несут, в частности, рентгеновские и гамма-лучи. Так, рентгеновские телескопы предоставляют сведения о черных дырах, фоновом излучении и др.; гамма-астрономия — о вспышках на Солнце, пульсарах, нейтронных звездах и др. При этом рентгеновские и гамма-лучи, излучаемые особенно мощными источниками, поглощаются в земной атмосфере, и поэтому непосредственно могут наблюдаться только из космоса, со спутников, орбитальных станций либо (в некоторых случаях гамма-излучения) с высотных аэростатов.

 

Во-вторых, это космические лучи. На Землю из глубин космоса, а также от Солнца непрерывно льются потоки лучей. Некоторые из них достигают поверхности Земли, другие взаимодействуют с ее атмосферой. В космических лучах выделяется первичный состав (высокоэнергетические электроны, протоны, позитроны, антипротоны, тяжелые ядра и др.) и вторичный состав (частицы, образующиеся в результате взаимодействия частиц первичного состава со звездным, межзвездным, межпланетным и другим веществом).

 

 

В-третьих, это нейтринная астрономия. Как мы уже отмечали, нейтрино очень слабо взаимодействует с веществом и трудно регистрируется (см. 10.1.4). Зато оно несет ценнейшую информацию о процессах, протекающих внутри звезд, Солнца, в глубинах Вселенной, вспышках сверхновых звезд и др. [1] В частности, поток нейтрино был зафиксирован в 1987 г. во время вспышки сверхновой звезды в галактике, именуемой Большим Магеллановым облаком. Показательно, что детектор зафиксировал в этом потоке 12 нейтрино из 116 прошедших через него! На другой установке за 30 лет наблюдений удалось зафиксировать 2000 нейтрино от Солнца.

 

1 Нобелевская премия по физике за 2002 г. присуждена за изыскания в области астрофизики, в частности за обнаружение космических нейтрино (Р. Дэвису и М. Кошибе), и за открытие космических источников рентгеновского излучения (Р. Джиаккони).

 

 

И, в-четвертых, это гравитационные волны, которые возникают в результате грандиозных взрывов звезд. И хотя детектирование гравитационных волн пока остается серьезной проблемой, существует немало данных, свидетельствующих о существовании таких волн и перспективности гравитационной астрономии.

 

Не остались в забвении и старые, верные оптические методы наблюдения. Совсем недавно вступили в строй (и уже успели дать ценнейшую информацию) телескопы нового поколения, обладающие рекордной чувствительностью и разрешающей способностью: 10-метровая пара телескопов, состоящая из 36 шестиугольных сегментов с адаптивной оптикой, которые управляются как единое целое, а также 8-метровый телескоп на Гавайских островах; группа из четырех телескопов с зеркалами диаметром 8,2 м, управляемые как единое целое (как интерферометр), в Чилийских Андах. Значительный прогресс достигнут и в оптических наблюдениях из космоса. Много лет работает на внеземной орбите космический телескоп им. Э.Хаббла, передающий ценнейшие изображения далеких галактик.

 

Итак, пользуясь образным языком, можно сказать, что во второй половине XX в. астрономия открыла три новых окна во Вселенную, а старое, чуть приоткрытое окно распахнула настежь.

 

 

Кроме того, развитие ракетной техники и космонавтики дало возможность непосредственного исследования с помощью космических аппаратов, зондов и наблюдений космонавтов околоземного пространства, Луны, планет Солнечной системы, их спутников. Проектируются полеты астронавтов на Марс.

 

Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (как правило, неожиданных и во многом необъяснимых) явлений и астрономических объектов. Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной: обнаружение в конце 1940-х гг. существования «звездных ассоциаций», представляющих собой группы распадающихся после своего рождения звезд; 1950-х гг. — явлений распада скоплений и групп галактик; открытие в 1960-е гг. квазаров [1], радиогалактик, активности ядер галактик с колоссальным энерговыделением (около 1060 эрг); обнаружение в 1967 г. нейтронных звезд, которые характеризуются экстремальными физическими условиями — колоссальной плотностью, сильнейшими магнитными и гравитационными полями; пульсаров; грандиозных по своей мощности вспышек рентгеновского и гамма-излучения, природа которых не ясна; нестационарных явлений в недрах звезд и нестационарных явлений в Солнечной системе (быстрый распад короткопериодических комет, планетарная эруптивная деятельность (взрывы, выбросы материи в космос) и др. Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение: «реликтового» излучения, которое является важнейшим аргументом в пользу теории «горячей» Вселенной; «черных дыр», других планетных систем, доминирования «темной материи» во Вселенной и др.

 

1 Квазары — самые мощные из известных сейчас источников энергии. При сравнительно небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд звезд. Для квазаров характерны и признаки явной нестабильности: переменность блеска и выбросы вещества с огромными скоростями. Существует точка зрения, что квазары являются ядрами галактик и представляют собой сверхмассивные «черные дыры».

 

 

 

11.2. Новая астрономическая революция

 

Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретикометодологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций. Среди них особое место занимает инфляционная космология.

 

На этом фоне интенсивно происходят дифференциация и интеграция знаний о Вселенной. Не только выделяются новые отрасли теоретической и наблюдательной астрономии, но и возникают прикладные отрасли астрономии в связи с успехами космической техники. В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного знания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией.

 

По сути, во второй половине XX в. астрономия вступила в период научной революции, которая изменила способ астрономического познания — на смену классическому пришел «неклассический» способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира. В основании новой астрономической картины мира — образ нестационарной, динамической, развивающейся Вселенной.

 

Рассмотрим сначала основные элементы современной астрономической картины мира, а затем методологические установки неклассической астрономии.

 

11.3. Солнечная система

 

11.3.1. Планеты и их спутники. Земля — спутник Солнца в мировом пространстве, вечно кружащийся вокруг этого источника тепла и света. Самыми яркими из постоянно наблюдаемых нами небесных объектов, кроме Солнца и Луны, являются соседние с нами планеты. Они принадлежат к числу тех девяти миров (включая Землю), которые обращаются вокруг Солнца (а его радиус 700 тыс. км, т.е. в 100 раз больше радиуса Земли) на расстояниях, достигающих нескольких миллиардов километров. Группа планет вместе с Солнцем составляет Солнечную систему. Планеты хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Они видны только потому, что отражают солнечный свет, который кажется очень яркими, поскольку планеты гораздо ближе к Земле, чем звезды.

 

 

Кроме планет, в солнечную «семью» входят спутники планет (в том числе и наш спутник — Луна), астероиды, кометы, метеорные тела. Планеты расположены в следующем порядке: Меркурий, Венера, Земля (один спутник — Луна), Марс (два спутника), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (1 спутник). Земля в 40 раз ближе к Солнцу, чем Плутон, и в 2,5 раза дальше, чем Меркурий. Возможно, что за Плутоном есть еще одна или несколько планет, но поиски их среди множества звезд слабее 15-й величины слишком кропотливы и не оправдывают затраченного времени. Возможно, они будут открыты «на кончике пера», как это уже было с Ураном, Нептуном и Плутоном.

 

Важную роль в Солнечной системе играет межпланетная среда, те формы вещества и поля, которые заполняют пространство Солнечной системы. Основные компоненты этой среды — солнечный ветер (поток заряженных частиц, в основном протонов и электронов, истекающих с поверхности Солнца); заряженные частицы высокой энергии, приходящие из глубин космоса; межпланетное магнитное поле; межпланетная пыль (большая часть с массой 10-3—10-5 г), основным источником которой являются кометы; нейтральный газ (атомы водорода и гелия).

 

С 1962 г. планеты и их спутники успешно исследуются космическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса, сфотографированы поверхность Меркурия, облачный покров Венеры, Юлитера, Сатурна, вся поверхность Луны, получены изображения спутников Марса, Юпитера, Сатурна, колец Сатурна и Юпитера. Спускаемые космические аппараты исследовали физические и химические свойства пород, слагающих поверхность Марса, Венеры, Луны (образцы лунных пород были доставлены на Землю и тщательно изучены). С конца 1970-х гг. космическими станциями («Вояджер», «Галилео» и др.) исследовались планеты-гиганты и их спутники. Полученная информация значительно обогатила наши представления о строении и происхождении Солнечной системы.

 

 

По физическим характеристикам планеты делятся на две группы: планеты земного типа (Меркурий, Венера, Земля, Марс) и планеты-гиганты (Юпитер, Сатурн, Уран, Нептун). О Плутоне известно мало, но, по-видимому, он ближе по своему строению к планетам земной группы.

 

 

11.3.2. Строение планет. Строение планет слоистое. Выделяют несколько сферических оболочек, различающихся по химическому составу, фазовому состоянию, плотности и другим характеристикам.

 

Все планеты земной группы имеют твердые оболочки, в которых сосредоточена почти вся их масса. Венера, Земля и Марс обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Окутан плотной атмосферой крупнейший спутник Сатурна — Титан, который по размерам больше планеты Меркурий. Титан — единственный спутник в нашей Солнечной системе, обладающий постоянной и плотной газовой атмосферой, которая состоит главным образом из азота и метана. Запущенная в 1997 г. к Сатурну автоматическая космическая станция «Кассини», уже передавшая изображения Сатурна, в 2004 г. должна сблизиться с Титаном, спустить на его поверхность, «прититанить» на парашюте космический зонд «Гюйгенс», который будет передавать информацию о состоянии атмосферы и поверхности Титана (ее температура — 180°С).

 

Земля имеет жидкую оболочку из воды — гидросферу, а также биосферу (результат прошлой и современной деятельности живых организмов). Аналогом земной гидросферы на Марсе является криосфера — лед в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы — дефицит воды на Венере.

 

Характеристики твердых оболочек планет относительно хорошо известны лишь для Земли. Модели внутреннего строения других планет земной группы строятся главным образом на основании данных о свойствах вещества земных недр. Как и у Земли, в твердых оболочках планет выделяют: кору — самую внешнюю тонкую (10—100 км) твердую оболочку; мантию — твердую и толстую (1000—3000 км) оболочку; ядро — наиболее плотную часть планетных недр.

 

Ядро Земли, состоящее, скорее всего, из железа, подразделяется на внешнее (жидкое) и внутреннее (твердое); температура в центре Земли оценивается в 4000—5000 К. Жидкое ядро, вероятно, есть также у Меркурия и Венеры; у Марса его, по-видимому, нет.

 

 

Наиболее распространены в твердом «теле» Земли железо (34,6%), кислород (29,5%), кремний (15,2%) и магний (12,7%).

 

Таким образом, планеты земной группы резко отличаются по элементному составу от Солнца и совершенно не соответствуют средней космической распространенности элементов — очень мало водорода, инертных газов, включая гелий.

 

Планеты-гиганты обладают иным химическим составом. Юпитер и Сатурн содержат водород и гелий в той же пропорции, что и Солнце. Вероятно, другие элементы также содержатся в пропорциях, соответствующих солнечному составу. В недрах Урана и Нептуна, по-видимому, больше тяжелых элементов.

 

Недра Юпитера находятся в жидком состоянии, за исключением небольшого ядра, которое представляет собой результат металлизации жидкого водорода. Температура в центре Юпитера около 30 000 К. Химический и изотопный состав Юпитера отражает, по-видимому, состав межзвездной среды, какой она была 5 млрд лет назад. Вместе с тем Юпитер никогда не был настолько горяч, чтобы в нем могли протекать термоядерные реакции. Сатурн по внутреннему строению похож на Юпитер. Строение недр Урана и Нептуна иное: доля каменистых материалов в них существенно больше.

 

Основными источниками энергии в недрах планет являются радиоактивный распад элементов и выделение гравитационной потенциальной энергии при аккреции (объединении) и дифференциации вещества, его постепенном перераспределении по глубине в соответствии с плотностью — тяжелые фрагменты тонут, легкие всплывают. На Земле подобное перераспределение еще далеко не завершилось. Такие процессы вызывают перемещения отдельных участков земной коры, деформацию, горообразование, тектонические и вулканические процессы.

 

Причина вулканических процессов в следующем. В верхней мантии существуют небольшие области, где температура достаточна для плавления ее вещества. Расплавленное вещество (магма), выдавливающееся вверх, прорывается через кору, и происходит вулканическое извержение. Судя по характеру поверхности, среди планет земной группы тектонически наиболее активна Земля, за ней следуют Венера и Марс. При этом важно, что выделяемая Землей тепловая энергия никогда не приводила ее в полностью расплавленное состояние.

 

 

Высокой тектонической и вулканической активностью отличаются и спутники дальних планет Солнечной системы, особенно Юпитера и Сатурна. Недавно было зафиксировано самое крупное извержение вулкана в Солнечной системе на спутнике Юпитера, который называется Ио. Площадь этого извержения — около 2000 км2, а его мощность превышает извержения земных вулканов в 5—6 тысяч раз! Ио — самое сейсмическое небесное тело во всей Солнечной системе.

 

Поверхность планет и их спутников формируют, кроме эндогенных (тектонических, вулканических) процессов, и экзогенные — падение метеорных тел, астероидов, которое приводит к образованию кратеров, эрозия (под действием ветра, осадков, воды, ледников), химическое взаимодействие поверхности с атмосферой и гидросферой и др. Эндогенные и экзогенные процессы определяют рельеф поверхности планет.


Дата добавления: 2016-01-05; просмотров: 18; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!