Определение. Две фигуры называют равными, если существует движение, при котором одна из данных фигур является образом другой.



Запись означает, что фигуры равны.

Если существует движение, при котором фигура является образом фигуры то обязательно существует движение, при котором фигура является образом фигуры Такие движения называют взаимно обратными.

Замечание. Ранее равными фигурами мы называли такие фигуры, которые совпадали при наложении. Термин «наложение» интуитивно понятен, и в нашем представлении он связывается с наложением реальных тел. Но геометрические фигуры нельзя наложить в буквальном смысле этого слова. Теперь наложение фигуры на фигуру можно рассматривать как движение фигуры при котором ее образом будет фигура

Термин «движение» также ассоциируется с определенным физическим действием: изменением положения тела без деформации.

Именно с этим связано появление этого термина в математике. Однако в геометрии предметом исследования является не процесс, происходящий во времени, а лишь свойства фигуры и ее образа.

То, что изображенные на рисунке 17.3 фигуры равны, понятно из наглядных соображений. Строгое обоснование этого факта дает следующая теорема.

Теорема 17.1 (свойство параллельного переноса). Параллельный перенос является движением.

Доказательство: Пусть — произвольные точки фигуры (рис. 17.4), точки — их соответствующие образы при параллельном переносе на вектор Докажем, что

Имеем: Векторы и имеют координаты Следовательно, координатами точек и являются соответственно пары чисел

Найдем расстояние между точками

Найдем расстояние между точками

Следовательно, мы показали, что то есть параллельный перенос сохраняет расстояние между точками.

Следствие. Если фигура — образ фигуры при параллельном переносе, то

Это свойство используется при создании рисунков на тканях, обоях, покрытиях для пола и т. п. (рис. 17.5).

Если фигура является образом фигуры при параллельном переносе на вектор то фигура является образом фигуры при параллельном переносе на вектор (рис. 17.6).

Параллельные переносы на векторы являются взаимно обратными движениями.

Пример №1

Каждой точке фигуры ставится в соответствие точка — заданные числа. Докажите, что такое преобразование фигуры является параллельным переносом на вектор

Решение:

Рассмотрим вектор Заметим, что координаты вектора равны то есть Следовательно, описанное преобразование фигуры — параллельный перенос на вектор

Пример №2

Точка является образом точки при параллельном переносе на вектор Найдите координаты вектора и координаты образа точки

Решение:

Из условия следует, что Отсюда

Пусть — образ точки Тогда то есть Отсюда

Ответ:

Пример №3

Даны угол и прямая не параллельная ни одной из сторон этого угла (рис. 17.7). Постройте прямую параллельную прямой так, чтобы стороны угла отсекали на ней отрезок заданной длины

Решение:

Рассмотрим вектор такой, что и (рис. 17.8). Построим луч являющийся образом луча при параллельном переносе на вектор Обозначим точку пересечения лучей буквой Пусть — прообраз точки при рассматриваемом параллельном переносе. Тогда

Приведенные рассуждения подсказывают следующий алгоритм построения:

1. найти образ луча при параллельном переносе на вектор

2. отметить точку пересечения луча с построенным образом;

3. через найденную точку провести прямую параллельную прямой Прямая будет искомой.

Осевая симметрия

Определение. Точки называют симметричными относительно прямой если прямая является серединным перпендикуляром отрезка (рис. 18.1). Если точка принадлежит прямой то ее считают симметричной самой себе относительно прямой

Например, точки у которых ординаты равны, а абсциссы — противоположные числа, симметричны относительно оси ординат (рис. 18.2).

Рассмотрим фигуру и прямую Каждой точке фигуры поставим в соответствие симметричную ей относительно прямой точку

В результате такого преобразования фигуры получим фигуру (рис. 18.3). Такое преобразование фигуры называют осевой симметрией относительно прямой Прямую называют осью симметрии. Говорят, что фигуры симметричны относительно прямой

Теорема 18.1 (свойство осевой симметрии). Осевая симметрия является движением.

Доказательство: Выберем систему координат так, чтобы ось симметрии совпала с осью ординат. Пусть и — произвольные точки фигуры Тогда точки и — их соответствующие образы при осевой симметрии относительно оси ординат. Имеем:

Мы получили, что то есть осевая симметрия сохраняет расстояние между точками. Следовательно, осевая симметрия является движением.

Следствие. Если фигуры симметричны относительно прямой, то

Определение. Фигуру называют симметричной относительно прямой если для каждой точки данной фигуры точка, симметричная ей относительно прямой также принадлежит этой фигуре.

Прямую называют осью симметрии фигуры. Также говорят, что фигура имеет ось симметрии.

Приведем примеры фигур, имеющих ось симметрии. На рисунке 18.4 изображен равнобедренный треугольник. Прямая, содержащая его высоту, проведенную к основанию, является осью симметрии треугольника.

Любой угол имеет ось симметрии — это пря-Рис. 18.5 мая, содержащая его биссектрису (рис. 18.5).

Равносторонний треугольник имеет три оси симметрии (рис. 18.6). Две оси симметрии имеет отрезок: это его серединный перпендикуляр и прямая, содержащая этот отрезок (рис. 18.7).

Квадрат имеет четыре оси симметрии (рис. 18.8).

Существуют фигуры, имеющие бесконечно много осей симметрии, например окружность. Любая прямая, проходящая через центр окружности, является ее осью симметрии (рис. 18.9).

Бесконечно много осей симметрии имеет и прямая: сама прямая и любая прямая, ей перпендикулярная, являются ее осями симметрии.

Пример №4

Начертили неравнобедренный треугольник Провели прямую содержащую биссектрису угла Потом рисунок стерли, оставив только точки и прямую Восстановите треугольник

Решение:

Поскольку прямая является осью симметрии угла то точка — образ точки при симметрии относительно прямой — принадлежит лучу Тогда пересечением прямых и является вершина искомого треугольника (рис. 18.10).

Эти соображения подсказывают, как построить искомый треугольник: строим точку симметричную точке относительно прямой Находим вершину как точку пересечения прямых и

Пример №5

Точка принадлежит острому углу (рис. 18.11). На сторонах угла найдите такие точки чтобы периметр треугольника был наименьшим.

Решение:

Пусть точки — образы точки при симметриях относительно прямых соответственно (рис. 18.12), а прямая пересекает стороны в точках соответственно. Докажем, что точки — искомые.

Заметим, что отрезки симметричны относительно прямой Следовательно, Аналогично Тогда периметр треугольника равен длине отрезка

Покажем, что построенный треугольник имеет наименьший периметр из возможных.

Рассмотрим треугольник где — произвольные точки соответственно лучей причем точка не совпадает с точкой или точка не совпадает с точкой

Понятно, что

Тогда периметр треугольника равен сумме Однако


Дата добавления: 2021-12-10; просмотров: 44; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!