Система источник тока – двигатель постоянного тока, замкнутая по напряжению якоря.



Использовав отрицательную обратную связь по напряжению на якоре или в пренебрежении Rя - по ЭДС вращения - рис. 3.24,а, получим

                        ,

                   

а)                                                          б)

Рис. 3.24. Схема (а) и характеристики (б) системы источник тока – двигатель, замкнутой по напряжению на якоре

откуда, подставив в уравнение для момента, будем иметь:

                                 .

Таким образом, в этой структуре механические характеристики имеют вид гипербол - рис. 3.24,б, т.е. стабилизируется мощность, развиваемая двигателем.

Приведенные примеры иллюстрируют богатые возможности получения искусственных механических характеристик любой требуемой формы посредством использования соответствующих обратных связей.

Следует отметить, что в системе источник тока - двигатель замыкание системы позволяет распространить экономный способ регулирования изменением магнитного потока на всю область -М, т.е. сделать регулирование двухзонным, с широкими функциональными возможностями.

Однако, следует также иметь в виду, что рассмотренные приемы относятся лишь к получению статических характеристик и не учитывают динамических особенностей системы, которые в ряде случаев могут потребовать дополнительных усилий для получения удовлетворительных результатов.


Частотное регулирование асинхронного двигателя с короткозамкнутым ротором. Оценка способа. Характеристики.

Как следует из ,  пропорциональна частоте f1 и не зависит для данной машины от каких-либо других величин. Вместе с тем, изменяя f1, следует заботиться об амплитуде напряжения: при уменьшении f1 для сохранения магнитного потока на некотором, например, номинальном уровне в соответствии с  следует изменять  так, чтобы

                                            .

При увеличении частоты от номинальной при U1=U поток в соответствии с (4.4) будет уменьшаться.

Как следует из (4.11,а), в пренебрежении R1, т.е. в предположении, что E1»U1, критический момент также пропорционален , тогда как критическое скольжение sк обратно пропорционально f1.

Механические характеристики при частотном регулировании в предположении, что E1=U1, показаны на рис. 4.8,б.

Сопротивление цепи статора, которым мы пренебрегаем, оказывает влияние на характеристики особенно малых машин (киловатты) - пунктир на рис. 4.8,б, поскольку при снижении частоты E1<U1. Для компенсации этого влияния обычно несколько увеличивают напряжение при низких частотах - пунктир на рис. 4.8,в.

Проведем оценку частотного регулирования скорости по введенным ранее показателям

1. Регулирование двухзонное - вниз ( ) и вверх (U1=U, f1>f) от основной скорости.

2. Диапазон регулирования в разомкнутой структуре (8-10):1. Стабильность скорости - высокая.

3. Регулирование плавное.

4. Допустимая нагрузка - М=Мн при регулировании вниз от основной скорости (Ф » const), Р = Рн  при регулировании вверх (Ф < Фн).

5. Способ экономичен в эксплуатации - нет дополнительных элементов, рассеивающих энергию; как будет показано далее, малы потери в переходных процессах. Несомненное достоинство - гибкость управления координатами в замкнутых структурах. Современные методы так называемого векторного управления обеспечивают частотно-регулируемому электроприводу практически те же свойства по управляемости, которые имеет самый совершенный электропривод постоянного тока.

6. Способ требует использования преобразователя частоты (ПЧ) - устройства, управляющего частотой и амплитудой выходного напряжения. Такие устройства - совершенные и доступные - появились в последнее десятилетие, однако они ещё сравнительно дороги - около 100 USD/кВт в 1999 г. Принцип построения современных ПЧ рассмотрен далее.


Дата добавления: 2018-02-15; просмотров: 661; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!