Поглощение света. Закон Бугера



Поглощение света в веществе связано с преобразованием энергии электромагнитного поля волны в тепловую энергию вещества (или в энергию вторичного фотолюминесцентного излучения). Закон поглощения света (закон Бугера) имеет вид:

I=I0 exp(-ax), (1)

где I0, I -интенсивности света на входе (х=0) и выходе из слоя среды толщины х, a-коэффициент поглощения, он зависит от l.

Для диэлектриков a=10-1¸ 10-5 м-1 , для металлов a=105¸ 107 м-1, поэтому металлы непрозрачны для света.

Зависимостью a(l ) объясняется окрашенность поглощающих тел. Например, стекло, слабо поглощающее красный свет, при освещении белым светом будет казаться красным.

Рессеяние света

Дифракция света может происходить в оптически неоднородной среде, например в мутной среде(дым, туман, запыленный воздух и т.п.). Дифрагируя на неоднородностях среды, световые волны создают дифракционную картину, характеризующуюся довольно равномерным распределением интенсивности по всем направлениям.

Такую дифракцию на мелких неоднородностях называют рассеянием света.

Это явление наблюдается, если узкий пучок солнечных лучей проходит через запыленный воздух, рассеивается на пылинках и становится видимым.

Если размеры неоднородностей малы по сравнению с длиной волны (не более чем 0,1l ), то интенсивность рассеянного света оказывается обратно пропорциональна четвертой степени длины волны, т.е.

Iрасс ~ 1/l 4, (2)

эта зависимость носит название закона Релея.

Рассеяние света наблюдается также и в чистых средах, не содержащих посторонних частиц. Например, оно может происходить на флуктуациях (случайных отклонениях) плотности, анизотропии или концентрации. Такое рассеяние называют молекулярным. Оно объясняет, например, голубой цвет неба. Действительно, согласно (2) голубые и синие лучи рассеиваются сильнее, чем красные и желтые, т.к. имеют меньшую длину волны, обуславливая тем самым голубой цвет неба.

Уравнение переноса излучения

Уравне́ние перено́са излуче́ния — одно из основных уравнений теории звёздных фотосфер. В наиболее общем виде имеет следующий вид:

{\displaystyle {\frac {dI_{\nu }}{ds}}=-\alpha _{\nu }I_{\nu }+\varepsilon _{\nu }} ,

где — интенсивность излучения, {\displaystyle s}    — расстояние, на которое излучение переносится, {\displaystyle \alpha _{\nu }} — коэффициент поглощения, {\displaystyle \varepsilon _{\nu }} — коэффициент излучения. Часто уравнение переноса записывают в интегральной форме:

Величину {\displaystyle \int \limits _{0}^{s}{\alpha _{\nu }(s')ds'}} называют оптическим расстоянием между двумя точками. При прохождении излучением единичного оптического расстояния интенсивность излучения уменьшается в e раз (если среда не излучает).

Эффект Вавилова-Черенкова

Черенковское излучение (или излучение Вавилова-Черенкова) возникает при движении заряженной частицы в прозрачной среде со скоростью v большей скорости света в этой среде, т.е. при v > c/n, где с – скорость света в вакууме, а n – показатель преломления среды.
Черенковское излучение является совместным излучением множества атомов среды, расположенных вдоль траектории движения частицы и поляризованных её электрическим полем. Таким образом, непосредственно излучает не частица, а среда, в которой движется частица. Волновой фронт этого излучения представляет собой поверхность конуса, вершиной которого является частица, а осью – её траектория. Угол раствора конуса θ фиксирован и определяется скоростью частицы v и свойствами среды (v - показатель преломления среды,       θ = c/vn.). Ситуация похожа на ту, которая возникает на поверхности воды при движении катера. Катер, выполняющий в этом примере роль частицы, создает волну возмущения водной поверхности, фронт которой образует острый угол, вершиной которого является катер.

 

 

Рис. Конус черенковского излучения. 1 - частица, 2 - траектория частицы, 3 - фронт волны.

Энергия частицы, конвертируемая в черенковское излучение, мала по сравнению с энергией, которую она тратит на ионизацию и возбуждение атомов среды. Число фотонов, излучаемых на 1 см пути, в зависимости от среды (радиатора) колеблется от нескольких единиц до нескольких сот. Это излучение можно наблюдать визуально и регистрировать с помощью фотоплёнки или фотоэлектронного умножителя (ФЭУ), преобразующего энергию излучения в электрический сигнал. На цветной фотоплёнке, расположенной перпендикулярно направлению движения частицы, излучение, выходящее из радиатора, имеет вид кольца сине-фиолетового цвета.

Люминесценция

Люминесценцией называют свечение тел, которое не может быть объяснено их тепловым излучением. Так, например, в видимой области спектра тепловое излучение становится заметным только при температуре ~103-104 К, а люминесцировать тело может при любой температуре. Поэтому люминесценцию часто называют холодным свечением. Одной из причин, вызывающих люминесценцию, является внешнее излучение, которое возбуждает молекулы тела. Например, падающий свет. После прекращения процесса облучения люминесцентное свечение не прекращается тотчас же, а продолжается еще некоторое время. Это последействие отличает люминесценцию от таких явлений, как отражение и рассеяние света. В настоящее время в физике принято следующее определение люминесценции.

Люминесценция - излучение, представляющее собой избыток над тепловым излучением тела и продолжающееся в течение времени, значительно превышающего период световых колебаний (1015с).


[1] «Шляпки» над амплитудой означают комплексные амплитуды.


Дата добавления: 2018-02-15; просмотров: 374;