ПОЛУПРОВОДНИКОВЫЕ НЕЛЕНЕЙНЫЕ ЭЛЕМЕНТЫ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА.



 

Однополупериодный выпрямитель.

 

Одно из самых распространенных применений полупроводниковых элементов состоит в выпрямлении переменного тока.

Для выпрямления применяются электрические вентили с несимметричной характеристикой. Идеальный вентиль в одном направлении должен обладать сопротивлением равным нулю, а в другом – равным бесконечности. ВАХ такого вентиля приведена на рис.58. Включение такого вентиля в цепь переменного тока (рис.57.а) обеспечивает прохождения тока только одного направления (рис.57.б) .

Рис.57. Однополупериодный выпрямитель

а) схема выпрямителя, б) диаграмма тока и напряжения

 

При синусоидальном напряжении  ток в проводящий период ( ) равен  , а в непроводящий период – нулю.

Рис.58. ВАХ диода

 

Средний ток (постоянная составляющая):

,      (77)

где -действующее значение напряжения.

Среднее (выпрямленное ) напряжение равно:

.                              (78)

Рассмотренная схема выпрямления получила название однополупериодного выпрямителя. Основным недостатком этой схемы являются большие пульсации выпрямленного тока, для сглаживания которых применяют индуктивные и емкостные фильтры (рис.59.а,б). Рассмотрим влияние индуктивности L и емкости Cна кривые выпрямленных тока и напряжения на конкретном примере.

Рис.59. Схема выпрямителя с индуктивным и емкостным фильтром

 

Пример 13. Для схем 59.а,б требуется рассчитать кривые выпрямленных тока и напряжения. Определить угол пропускания тока (открытого состояния) , среднее значение выпрямленных тока и напряжения. Исходные данные: ; =100 Ом; =1Гн; =10-3Ф.

Решение: Для схемы на рис.59.а рассмотрение начнем с нахождения зависимости   при открытом вентиле. Вентиль открывается при ,когда .Ток определяется в этом случае как переходный ток в цепи «RL» при включении ее на синусоидальное напряжение:

,                      (79)

где =329,69 Ом;

   = 1,26 рад;

=-100 (1/с).

Постоянная интегрирования определяется из начальных условий при , :

=>, =0,289

В итоге получаем:

.                    (80)

Результаты расчетов по уравнению сведены в таблицу 11.

Угол пропускания тока определяется моментом изменения знака тока с “+” на “-“:

=1,474·10-2 с , => = 4,63 рад.

Среднее выпрямленное напряжение:

. (81)

Средний выпрямленный ток:

,                                (82)

можно определить ток как среднеарифметическое:

.                               (83)

 

Расчетные значения тока и напряжения    Таблица 11

t·104

ωt

L-фильтр

С - фильтр

i u i u
0 0 0 0 0.209 20.9
8 0.25 0.0097 24.8 0.248 24.8
1.6 0.5 0.0373 48.1 0.481 48.1
2.4 0.75 0.0796 68.4 0.684 68.4
3.2 1 0.132 84.4 0.84 84.4
4 1.25 0.191 95.1 0.95 95.1
4.8 1.5 0.252 99.8 0.99 99.8
5.6 1.76 0.309 98.2 0.94 94.17
6.4 2.01 0.358 90.4 0.869 86.93
7.2 2.26 0.395 77.05 0.8025 80.25
8 2.51 0.417 58.7 0.74 74.08
8.8 2.76 0.422 36.8 0.68 68.38
9.6 3.01 0.4089 12.5 0.63 63.12
10.4 3.26 0.377 -12.5 0.58 58.27
11.2 3.52 0.329 -36.8 0.54 53.79
12 3.76 0.266 -58.7 0.5 49.65
1.28 4.02 0.193 -77.05 0.46 45.8
1.36 4.27 0.113 -90.4 0.42 42.3
1.44 4.52 0.032 -98.2 0.39 39
1.52 4.77 -0.0467 -99.8 0.36 36
1.6 5.02 0 0 0.33 33.2
1.68 5.27 0 0 0.307 30.7
1.76 5.52 0 0 0.283 28.3
1.84 5.78 0 0 0.261 26.1
1.92 6.03 0 0 0.241 24.17
2 6.28 0 0 0.223 22.3
2.08 6.53 0.097 24.8 0.209 20.9

 

 

Для схемы рис.59.б прежде чем переходить к расчетам необходимо разобраться с физической сущностью процессов. При открытом состоянии вентиля в первую четверть периода напряжение нагрузки (конденсатора) равно напряжению сети и изменяется по закону синусоиды

.

Во вторую четверть периода  напряжение на конденсаторе определяется переходной функцией:

,                        (84)

где  - принужденная составляющая (в данном случае разрядка конденсатора на резисторе ) ;

  - корень характеристического уравнения;

  - постоянная интегрирования.

Постоянную интегрирования определим из начальных условий при :                          ; =>  = 100.

Разрядка конденсатора продолжается до момента равенства напряжения  напряжению конденсатора , точка “А” на рис.60.

Расчет проводим по четвертям. Для первой четверти  напряжение на конденсатора находим по уравнению

.

Далее – по уравнению:

.

Конец второго этапа проще определить графически, в момент равенства напряжений на конденсаторе и входного напряжения:

 = 2,066·10-2 с ; .

Результаты расчеты сведены в таблицу 11. Угол пропускания:  = 1,361рад. Среднее значение напряжения

.

Среднее выпрямленное значение тока .

По данным таблицы 11 на рис.60 построены кривые выпрямленных тока и напряжения.

Рис.60. Выпрямленные ток и напряжения с учетом фильтров

 

Анализируя построенные зависимости, сделаем следующие выводы:

1. Применение любых фильтров уменьшают пульсации выпрямленного тока.

2. Применение L- фильтров снижает величину выпрямленных тока и напряжения, а применение C - фильтров, наоборот, повышает эти величины и при достаточно большой емкости конденсатора можно считать, что выпрямленные значения равны амплитудным значениям.

 


Дата добавления: 2021-03-18; просмотров: 78; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!