Разложение природных веществ.



 

В аэробных условиях все вещества биологического происхождения подвергаются распаду. Каким бы сложным ни было то или иное вещество, в природе всегда найдётся микроорганизм, способный полностью или частично его расщепить, а продукты этого расщепления будут использованы другими микроорганизмами. Для большинства микроорганизмов основными питательными веществами служат углеводы. Главными составными частями растительного материала являются полисахариды: целлюлоза, крахмал, гемицеллюлозы, пектины, агар, лигнин. Все эти вещества представляют собой макромолекулы. Для их расщепления микроорганизмы выделяют в среду экзоферменты, расщепляющие полимеры до мономеров и низших олигомеров (моно-, ди-, олигосахаров) которые поступают в клетку, где подвергаются дальнейшим превращениям. Аналогично расщепляется хитин животных и грибов. Широко распространены бактерии разлагающие углеводороды; причём, чем длиннее цепь углеводородов, тем активнее они разлагаются. Белки сначала расщепляются внеклеточными протеазами до пептидов, способных проникнуть в клетку, и частично до аминокислот. Пептиды поступают в клетку и гидролизуются внутриклеточными протеазами до аминокислот. Последние либо используются клеткой как таковые для синтеза белка либо подвергаются ряду превращений: декарбоксилированию до биогенных аминов, дезаминированию до оксокислот, трансаминированию с переносом аминогруппы на оксокислоту. Образовавшиеся продукты вовлекаются в промежуточный обмен.

 

Биосинтетические процессы.

Биосинтез аминокислот. Большинство микроорганизмов способны синтезировать все двадцать аминокислот, из которых строятся белки. Углеродные скелеты аминокислот образуются из промежуточных продуктов обмена. Аминогруппы вводятся в результате прямого аминирования или переаминирования. Перевод неорганического азота в органические соединения происходит всегда через аммиак. Нитраты, нитриты и молекулярный азот предварительно восста­навливаются в аммиак (ассимиляционная нитратредукция) и толь­ко после этого включаются в состав органических соединений.

Лишь немногие из аминокислот образуются в результате пря­мого аминирования свободными ионами . Таким образом обычно аминируется - кетоглутарат до глутамата и пируват до аланина. Все остальные аминокислоты получают свою аминогруппу в результате трансаминирования с одной из первичных аминокис­лот. Исходным материалом для синтеза аминокислот служат промежуточные продукты обмена (пируват, - кетоглутарат, оксалоацетат или фумарат, эритрозо-4-фосфат, рнбозо-5-фосфат и АТФ). В большинстве случаев аминогруппа вводится только на последнем этапе синтеза. Некоторые аминокислоты образуются в результате ряда превращений дру­гих аминокислот, и в этих случаях переаминирования не требует­ся.

Биосинтез нуклеотидов. Пуриновые и пиримидиновые нуклеотиды являются мономерами нуклеиновых кислот, входят в состав многих коферментов и участвуют в активации и переносе аминокислот, сахаров, липидов и компонентов клеточной стенки. Синтез всех пуриновых нуклеотидов идёт общим путём, разветвляющимся только на стадии инозиновой кислоты, после чего образуется либо адениловая, либо гуаниловая кислота. Общим является и путь синтеза пиримидиновых нуклеотидов; здесь разделение происходит на уровне уридиловой кислоты.

Исходным соединением для образования пентозного компонента нуклеотидов служит рибозо-5-фосфат. Он может образовываться дву­мя путями: 1)окислительным — из глюкозо-6-фосфата через окислительный пентозофосфатный путь и 2)неокислительным — из фруктозо-6- фосфата и глицеральдегид-3-фосфата через реакции, катализируемые трансальдолазой и транскетолазой. Рибозо-5-фосфат используется для синтеза нуклеотидов в высокоэнергетической форме — в виде фосфорибозилпирофосфата. Восстанов­ление рибозы до дезоксирибозы происходит на стадии рибонуклеотида и осуществляется посредством различных реакций.

Биосинтез липидов. Липиды являются важными компонентами цитоплазматических мембран и кле­точных стенок; служат запасными веществами. В бактериальных жирах преобладают длинноцепочечные на­сыщенные жирные кислоты и ненасыщенные жирные кислоты, со­держащие одну двойную связь; ненасыщенные жирные кислоты с несколькими двойными связями и стероиды, видимо, отсутству­ют; редки также триглицериды. Большое значение имеют слож­ные фосфолипиды. Биосинтез жирных кислот с длинной цепью протекает путем конденсации и восстановления ацетатных групп. Для повышения реакционной способности метильная группа ацетилкофермента А сначала карбоксилируется с образова­нием малонил-СоА:

СНз-СО ~ SСоА + СО2 + АТР + Н2О à НООС-СН2-СО ~ SСоА + АDP + Pi

В последующих реакциях конденсации карбоксильная группа сно­ва отщепляется в виде СО2. Синтез жирных кислот происходит при участии мультиферментного комплекса согласно уравнению

ацетил-СоА + 7малонил-СоА + 14 NADPH2 àпальмитил-СоА + 14NADP + 7СО2 + 7СоА + 7Н2О

 

Литература.

1. Шлегель Г. Общая микробиология. М.: Мир, 1987, 576 с.

 

2. Гусев М.В., Минеева Л.А. Микробиология. М.: Изд-во МГУ, 1992, 448 с. 


Дата добавления: 2020-12-12; просмотров: 100; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!