Получение клонированных животных. Этические и профессиональные проблемы.



Клонирование животных имеет большое теоретическое и практическое значение для биологии и медицины. Наличие генетически идентичных клонированных животных, практически недостижимое даже при традиционном инбридинге, актуально для тестирования медицинских препаратов и их побочного действия.

Животные с одинаковым геномом (клоны) являются оптимальным объектом для установления влияния факторов внешней среды и генома на фенотип животных. Эта технология важна для повышения эффективности селекции животных, т.к. позволяет копировать геном наиболее выдающихся племенных особей, оценка генотипов которых трудоемка. При обычных способах размножения с высоким размахом комбинативной изменчивости такая оценка невозможна.

В сельском хозяйстве генерации клонов необходимы для оценки продуктивности скота, качества молока и т.д. Получение товарных стад клонированных животных существенно упрощает технологию их эксплуатации. Эмбрионы с оптимальным набором генетических признаков могли бы быть выращены как клоны и использованы для классической репродукции.

Клонирование как технология может быть использовано также для сохранения биоразнообразия животных и растений.

Развитие технологии клонирования животных предполагает возможность получения трансгенных клонов, например, с повышенной продуктивностью или секрецией молока. Трансгенные овцы Полли и Рози были получены в Шотландии в 1998 г.

Трансгенные свиньи с блокированными локусами гистосовместимости (НLА МLС) или с заменой одного или двух генов рассматриваются в перспективе в качестве источников донорских органов и тканей для ксенотрансплантации у человека.

Описанный эксперимент по клонированию овцы Долли может быть применен в принципе к любому другому виду млекопитающих, включая человека. По мнению ученых ВНИИ генетики и разведения сельскохозяйственных животных, клонировать человека не сложнее, чем корову

Сегодня Клонирование человека интересует мировое сообщество не только с научных и биологических позиций. Является ли эта возможность юридически разрешенной и допустимой с точки зрения морали? - вот что становится ключевой правовой и этической проблемой.


 

Биотехнология биологически активных веществ.

Упрощенно технологию производства биологически-активных добавок можно представить в виде трех основных этапов: измельчение компонентов и их смешивание, в соответствии с рецептурой или формулой; получение экстрактов и высушивание; создание фармацевтической формы. Сначала предприятие осуществляет заготовку сырья, проводит контроль его качественных характеристик, подготавливают сырье к технологическому процессу производства. Подготовка представляет собой очистку, измельчение, растворение, высушивание, модификацию, извлечение (экстракция), проведение криообработки и пр., в зависимости от вида используемого сырья. Одним из наиболее оптимальных способов измельчения растительного сырья является криодробление, которое представляет собой мелкодисперсное (пылевидное) измельчение частей растительного сырья при температуре, близкой к абсолютному нулю. Для обеспечения таких температурных условий используется жидкий азот.


 


Микробное выщелачивание.

— использование главным образом тионовых (окисляющих серу и серосодержащие соединения) бактерий для извлечения металлов из руд, рудных концентратов и горных пород. При переработке бедных и сложных руд тысячи и даже миллионы тонн ценных металлов теряются в виде отходов, шлаков, «хвостов». Происходят также выбросы вредных газов в атмосферу. Бактериально-химическое выщелачивание металлов уменьшает эти потери . Основу этого процесса составляет окисление содержащихся в рудах сульфидных минералов тионовыми бактериями. Окисляются сульфиды меди, железа, цинка, олова, кадмия и т. д. При этом металлы из нерастворимой сульфидной формы переходят в сульфаты, хорошо растворимые в воде. Из сульфатных растворов металлы извлекаются путем осаждения, экстракции, сорбции. Одним из возможных путей извлечения металлов из растворов является адсорбция металлов клетками живых микроорганизмов, так называемая биосорбция металлов. Металлы включаются в состав специфических белков – металлотионеинов. Полезными для биогеотехнологии добычи металлов свойствами обладает целый ряд микроорганизмов. Но основным из них, безусловно, является открытый в 1947 г. Колмером и Кинкелем вид тионовых бактерий, названный Thiobacillus ferrooxidans. Необходимую для роста энергию эти бактерии получают при окислении восстановленных соединений серы и двухвалентного железа в присутствии свободного кислорода. Они окисляют практически все известные в настоящее время сульфиды металлов. Источником углерода для роста бактерий служит при этом углекислый газ. Характерной особенностью их физиологии является потребность в очень кислой среде. Они развиваются при рН от 1 до 4,8 с оптимумом при 2—3. Интервал температур, в котором могут развиваться бактерии этого вида, составляет от 3 до 40°С с оптимумом при 28°С. Тионовые бактерии широко распространены в природе. Они обитают в водоемах, почвах, угольных и золоторудных месторождениях. В значительных количествах встречаются они в месторождениях серных и сульфидных руд. Но в условиях естественного залегания таких руд активность тионовых бактерий сдерживается отсутствием кислорода. При разработке сульфидных месторождений руды вступают в контакт с воздухом, и в них развиваются микробиологические процессы, приводящие к выщелачиванию металлов. Применяя определенные биотехнологические мероприятия, этот естественный процесс можно ускорить.

Основной технологической операцией этого способа является орошение отвалов добытой руды растворами, содержащими серную кислоту, ионы двух- и трехвалентного железа, а также жизнеспособные клетки тионовых бактерий. Иногда для усиления процессов выщелачивания внутрь отвала подают воздух. В таких условиях выщелачивающий раствор фильтруется через толщу руды и в результате микробиологических и химических процессов обогащается извлекаемыми из руды металлами. Затем этот раствор собирают с помощью системы коллекторов, и из него извлекают металлы одним из физико-химических методов. Ежегодно в мире таким способом добывают сотни тысяч тонн меди, или примерно 5 % от ее общей добычи. В ряде стран этим способом получают также значительные количества урана.


 


Дата добавления: 2020-04-08; просмотров: 137; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!