Методика оценки достоверности средних и относительных показателей, их роль в практической работе педиатра.



При вычислении показателей довольно часто используют не всю генеральную совокупность, а только какую-то часть ее (например, при выборочном исследовании). Для того, чтобы по части явления можно было судить о явлении в целом, о его закономерностях, необходима оценка достоверности результатов исследования. Мерой достоверности показателя является его ошибка - ошибка представительности (репрезентативности). Ошибка показывает, насколько результат, полученный при выборочном исследовании, отличается от результата, который мог бы быть получен при сплошном исследовании всей генеральной совокупности. Средняя ошибка средней арифметической (m) равняется отношению среднеквадратического отклонения к квадратному корню из числа наблюдений. Средняя ошибка относительных показателей рассчитывается по формуле: m = , где р – соответствует величине относительного показателя, q =100 – p, если относительный показатель выражен в процентах, 1000 – р, если показатель вычислен в промилле и т.д. С увеличением числа наблюдений достоверность выборочного результата увеличивается, но это не значит, что следует стремиться бесконечно увеличивать число наблюдений. Это не нужно, а иногда и практически неосуществимо. Относительно небольшой, но качественно однородный статистический материал дает достаточно надежные выводы.

В тех случаях, когда уровень относительного показателя превышает величину основания (общий уровень заболеваемости составил 1300 случаев на 1000 человек), определение ошибки представительности по указанной выше формуле становится невозможным, и если показатель находится в пределах от 1,0 до 1,5 в среднем на одного человека, то ошибку представительности следует определять по формуле: m = , где М – среднее число заболеваний на одного человека (при заболеваемости 1300‰ – М = 1,3), n –общее число наблюдений.

Наиболее распространенным методом оценки достоверности разности между сравниваемыми выборочными результатами является критерий Стьюдента, предложенный В. Госсетом. Критерий t позволяет производить сравнение только между двумя выборочными величинами. Если необходимо сравнить между собой несколько однородных выборочных величин, то они сравниваются поочередно. Критерий достоверности (Стьюдента) определяется как величина разности средних величин или относительных показателей, деленная на извлеченную из квадратного корня сумму квадратов ошибок средних арифметических или относительных показателей. t =          t =        Для малых по объему выборок лучшим способом определения достоверности различий разнообразия признаков является критерий F Фишера. где - дисперсии первой и второй выборки соответственно. Как уже было отмечено, показателем степени разнообразия служит основное отклонение — σ (сигма). Еще более чувствительным показателем степени разнообразия (варьирования, дисперсии, разброса данных) служит σ2 (варианса, девиата, дисперсия).

Среднеквадратическое отклонение для простого ряда при числе наблюдений меньше 30 вычисляется по формуле:


Дата добавления: 2020-04-25; просмотров: 287; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!