Проектируем волновую электростанцию



 

Поднимая на высоту h тело с массой m, поперечная волна производит работу A против силы гравитации F=mg. Работа волны равна: А=Fh = mgH sin ft (20.1). Величина mgH в правой части (20.1) равна потенциальной энергии, которой тело обладает на гребне волны. Попробуем спроектировать электростанцию для превращения энергии волны в электричество.

Забьем в морское дно четыре стойки по углам квадрата, диагональ которого чуть больше диаметра бочки. К крышке бочки приварим кольцо, бочку опустим между стойками. Это будет поплавок. На стойках устроим платформу, на которой закрепим электрический генератор (далее – генератор). Генератор содержит две катушки с обмотками из медного провода (в медных проводах содержится гигантское количество заряженных частиц – электронов, которые являются носителями электрического поля). Большую катушку закрепим на платформе вертикально. Назовём её якорь. Концы обмотки якоря соединим с нагрузкой – электрической лампой. Это будет светильник маяка. Малую катушку поместим внутрь якоря с возможностью перемещаться вверх-вниз. Назовём её активатор. Концы обмотки активатора соединим с источником тока – аккумулятором. Катушку активатора соединим с бочкой при помощи стержня-шатуна, который свяжем с кольцом на бочке. Длина шатуна должна быть такой, чтобы при спокойном море активатор находился примерно посередине якоря.

Объем бочки равен 200 л. Согласно закону Архимеда, такая бочка может удержать на плаву груз весом до 2000 Н. Пусть вес активатора будет вдвое меньше: mg = 1000 Н. Параметры волны возьмём из § 19: Т=4 с, Н=1 м. Аккумулятор создает в обмотке активатора электрический ток. Ток создает вокруг активатора электрическое поле. Это поле действует на электроны в обмотке якоря. Начнём отсчёт, когда активатор находится посередине якоря.

В начальный момент активатор своим полем уже разогнал электроны из середины обмотки якоря к её концам. Мгновение спустя на платформу накатывает гребень волны, который начинает поднимать бочку вместе с активатором.

Двигаясь вверх, активатор своим полем перегоняет элек троны из верхней части обмотки якоря через нить накала лампы обратно в обмотку якоря. В лампе возникает электрический ток, который заставляет нить накала светиться. На вершине гребня волны бочка останавливается. При остановке активатора ток в обмотке якоря прекращается, лампа гаснет. В следующий момент бочка начинает спуск по склону гребня. При спуске активатора его поле перегоняет электроны из верхней части обмотки якоря через середину якоря вниз, через лампу, обратно в якорь. В лампе возникает обратный ток, нить накала снова начинает светиться. Когда бочка достигнет дна впадины волны, активатор останавливается. Ток через лампу прекращается, лампа гаснет. Через миг накатывает следующий гребень волны. Бочка начинает подъём. Активатор поднимаясь, гонит электроны в обмотке якоря вверх. В цепи лампы снова появляется ток. В дальнейшем всё повторяется.

Подсчитаем работу генератора за один период Т = 4 с. Удобнее считать с момента, когда бочка находится в нижней точке. За 2 секунды волна поднимет бочку на высоту 2 м. В следующие полпериода бочка опустится на 2 м. Потенциальная энергия активатора за период Т изменилась на величину: 1000 Н*4 м = 4 кДж. Мы не знаем, какую часть этой энергии генератор превратит в энергию электрического тока, КПД генератора может быть от 10 % до 90 %. Возьмём его среднее значение, равное 50 %. Значит, за один период генератор превратит в электричество 2 килоджоуля механической энергии волны. Разделив это значение на период Т=4 с, получим среднюю мощность света P = 2/4 = 0.5 (кВт). Для маяка это не самая большая мощность, но при соответствующей оптике свет можно сделать достаточно ярким. Рыбаки на ночной рыбалке вполне могут заметить свет такого маяка, мигающего в такт волнам. В дневное время энергией волны можно заряжать аккумулятор активатора.

 

Продольные волны

 

В продольной волне частицы среды совершают колебания около среднего положения вдоль направления переноса энергии. Поэтому её называют продольной. Типичным примером продольной волны является звук. В прежние времена люди в рабочих посёлках по утрам поднимались и шли на работу по звуку заводского гудка. Звук хорошо распространяется в воздухе. Точнее, в процессе эволюции наш слуховой аппарат приспособился хорошо улавливать звуковые волны. В пространстве вокруг источника звука возникает последовательность сгущений и разрежений среды. Энергия звуковой волны передаётся от сгущения к сгущению, которые колеблются около среднего положения с небольшой, порядка миллиметра, амплитудой. При этом энергия звука переносится на расстояние, которое в миллионы раз превышает амплитуду волны. Звук с расстоянием слабеет, так как частицы из сгущений разлетаются в стороны и уносят с собой энергию.

Скорость звука зависит от упругости среды. При нормальных условиях скорость звука в воздухе равна 330 м/с. Она не зависит от скорости перемещения источника звука. Этим волны отличаются от частиц. Например, когда сверхзвуковой истребитель, преследуя самолёт противника, выпускает ракету, скорость самолета-носителя прибавляется к скорости ракеты. При этом звук от двигателя истребителя долетает до земли с обычной скоростью звука в воздухе. Этим объясняется явление, когда истребитель уже скрылся за горизонтом, а звук от него еще не дошел до нашего уха. Скорость передачи звуковой энергии в более плотной среде может превышать скорость звука в воздухе, которую в авиации измеряют в «махах» (в честь физика по имени Мах). Например, скорость звука вдоль стального рельса равна почти пяти махам. Это очень много.

Авиаконструкторы называют такую скорость гиперзвуко вой. Чтобы создать гиперзвуковой самолет, тратятся большие материальные средства.

Мы уже знаем, что источником энергии может быть только материальное тело. Источником звуковой волны является любая стабильно вибрирующая поверхность. Звук от такого источника называют гармоническим или просто гармоникой. Если гармонику записать и пропустить через специальный прибор – анализатор спектра, то на экране прибора действительно можно увидеть график в виде синусоиды с определённой частотой. В музыкальных инструментах источником звука может быть натянутая струна (гитара), пластинка металла (металлофон) и даже столб воздуха (труба). Музыкальные инструменты производят одновременно несколько гармоник с различными амплитудами. Тембр, например кларнета, легко узнать, потому-что он содержит индивидуальный набор гармоник. Тембр барабана отличается тем, что в его звуке присутствует много гармоник с одинаковыми амплитудами. График ударного звука выглядит как сплошная полоса с неровными краями. Гармоники сливаются между собой, и мы не можем различить их на слух. Тогда мы слышим звук, который воспринимается как удар.

Мы можем слышать звуки, частота которых лежит в диапазоне от 20 до 20000 Гц. Неслышимые звуки делятся на инфразвуки и ультразвуки. Мощность звука лежит в диапазоне от уровня писка комара до уровня рёва космической ракеты на старте. Если звуки, извлечённые при помощи музыкальных инструментов, приятно слушать, они называются музыка. Слабые звуки можно усиливать при помощи при помощи электрических усилителей звуковой частоты. В паспорте усилителя для электрогитары всегда указывают потребляемую мощность и выходную мощность звука. Например, если в паспорте указано 40 Вт и 17 Вт, это значит, что усилитель «заберёт» из сети до 40 Вт электроэнергии, из которых до 17 Вт «выдаст» в виде энергии звуковых волн.

 

Другие виды волн

 

Мы уже говорили, что для переноса энергии при помощи звуковых волн нужна вещественная среда. Частицы вещества колеблются вверх-вниз или вперёд-назад на миллиметры, а энергия переносится на многие километры. Заметим, что вещество занимает ничтожно малый объём Вселенной. К примеру, выше 100 км над землёй начинается безвоздушное пространство. Спутники летают, начиная с высоты 300 км, они поддерживают связь с Землёй при помощи радиоволн. Это значит, что радиоволны способны проходить через безвоздушное пространство. Вселенная буквально заполнена радиоволнами. Значит, существуют волны, для которых вещественная среда особо не нужна. К таким волнам относятся волны электрического поля, или говоря проще, электрические волны.

Симулировать электрические волны легко. Подвесим на штативе два воздушных шарика так, чтобы они едва не касались друг друга. Затем потрем шарики о волосы и отпустим. В результате трения часть электронов с волос перешла на шарики, которые зарядились отрицательно. Еще древние греки знали, что одноимённые заряды отталкиваются. Мы увидим, что шарики разошлись и висят под углом к стойке штатива. Их удерживают встречные электрические поля вокруг шариков. Если один из шариков отклонить, действие его поля ослабнет. Тогда второй шарик приблизится к равновесному положению, т. е. к стойке штатива. Если первый шарик перемещать относительно стойки вперед-назад, второй шарик будет повторять его перемещения. Так вибрация заряженного тела передаётся через колебания электрического поля другому заряженному телу, заставляя его вибрировать. Перенос энергии при помощи колебаний поля и есть волна поля, в данном случае волна электрическая.

Важнейшей энергетической характеристикой волны является её частота. Поскольку источником электрического поля являются легчайшие частицы электроны, которые могут двигаться с огромной скоростью, частота радиоволны может достигать огромной величины. Например, современное телевидение охватывает диапазон частот до 1 ГГц и более. Это большая величина для радиоволны. Другой характеристикой волны является её длина. Это расстояние, на которое энергия переносится за один период волны. Раньше для радиосвязи использовали радиоволны с длиной в сотни метров. В первых радиоприёмниках шкала радиоволн начиналась с одного километра. Метровый диапазон был освоен аналоговым телевидением. Потом изобрели цифровое ТВ, в котором используются более еще короткие волны. То, что для древних греков было игрушкой, в наше время превратилось в мощное средство связи.

Несмотря на очевидные успехи радиотехники, в понимании природы радиоволны до сих пор нет полной ясности. По традиции считается, что в радиоволне колебания электрического поля сопровождаются колебаниями магнитного поля. Правда, при этом делается оговорка, что магнитное поле самостоятельно не существует и энергию не переносит. Значит, в нашем энергетическом подходе магнитное поле особой роли не играет. В аналогичной ситуации мы уже сталкивались с так называемой силой инерции. Эта сила работу тоже не производит. Она появляется в результате того, что выбранная система отсчета является неинерциальной. Возможно, магнитное поле тоже появляется в результате неправильного выбора системы отсчёта.

Скорость радиоволны равна скорости света. Это дало повод считать свет электромагнитной волной с частотой порядка 1016 Гц. В нашем подходе это мнение особой информативностью не обладает, так как магнитное поле энергию не переносит. Но мы не станем отказываться от понятия магнитного поля. Теория магнетизма формально хорошо проработана, её методы просты и надежны. Вспомним, что в § 14 мы использовали неинерциальную систему отсчета. Благодаря этому формальному приёму объём вычислений сократился в шесть раз.

Несколько слов следует сказать о волнах гравитации. Теория утверждает, что для генерирования волны гравитации необходимо, чтобы массивное тело двигалось с ускорением ускорения. Такое возможно под действием переменной силы, например, при прохождении кометы вблизи Солнца. Кометы нередки в нашем небе, но гравитационные волны пока не зарегистрированы. Возможно, амплитуда и период этих волн настолько чрезмерны, что мы их просто не воспринимаем. Так мелкий веслоногий рачок, барахтающийся на поверхности океана, не замечает, что под ним прошла волна цунами, так как его мир поднялся и опустился вместе с ним.

 

О древних греках

 

Аристотель, величайший научный авторитет древности, считал, что тяжелые тела падают на землю быстрее лёгких. Докажем, что он ошибался. Согласно второму закону Ньютона, F=ma. Согласно «четвёртому» закону, вес тела P=mg. На поверхности земли вес равен силе притяжения, т. е. P=F. Значит, можно написать: mg=ma (23.1). Если масса из второго закона то же самое, что масса из «четвёртого», мы имеем право сократить уравнение (23.1) на m. После сокращения получаем: g=a, т. е. ускорение падения не зависит от массы тела. Заметим, что существует теория (академика Логунова), из которой следует, что «тяжелая» масса не то же самое, что масса инерционная. Правда, расхождение для одного и того же тела возникает, начиная с 14-го знака после запятой, до этого всё совпадает. Зарегистрировать такое сверхмалое расхождение пока невозможно из-за отсутствия сверхточных приборов. В любом случае, это уже не механика Ньютона и даже не теория Эйнштейна.

Величайшим механиком древности признан Архимед. Он открыл основной закон гидростатики (закон Архимеда), изобрёл архимедов винт и множество других механизмов. Архимед говорил: «Дайте мне точку опоры, и я с помощью рычага подниму земной шар». Это не случайно. Во всех своих механизмах Архимед использовал золотое правило рычага, которое гласит: «пусть мы проиграем в расстоянии, зато выиграем в силе». Нетрудно понять, что принцип рычага основан на законе сохранения механической энергии, которая равна выполненной работе: E = Fs = A. Покажем это.

Допустим, надо поднять упавшее на дорогу бревно. При подъёме увеличивается потенциальная энергия бревна: E=Ph1. Для этого надо выполнить работу A=Fh2. Бревно поднимаем прочной жердью. Заведем под конец бревна жердь и подложим под нее опору – полено толщиной 0.1 м. Исходные данные таковы: пусть вес бревна равен 10 кН, но при подъёме конца бревна нагрузка на рычаг равна весу полбревна, т. е. Р1 = 5 кН. Вес спасателя P2 = 1 кН. Опытным путем находим ближайшую к опоре точку на жерди, где, навалившись всем весом, спасатель может опустить жердь до горизонтального положения. Измерение высоты h2, с которой опустилась точка на жерди, даёт: h2 = 0.5 м. Подставим найденные данные в уравнения. Конец бревна поднялся на высоту h1 = 0.1 м, значит, Е = P1h1 = 5 кН * 0.1 м = 0.5 кДж.

С другой стороны, работа равна: A = Fh2 = P2h2 = 1 кН * 0.5 м = 0.5 кДж. Мы доказали, что A = E. Очевидно, рычаг, увеличивая силу, при этом пропорционально уменьшает темп передачи энергии. По этой причине передаваемая телу энергия не может быть больше производимой работы.

Похожим свойством обладает наклонная плоскость, секрет которой был известен до Архимеда. Ещё древние египтяне закатывали каменные колонны по длинным наклонным доскам. Пускай путь увеличивался в несколько раз, зато пропорционально уменьшалась скатывающая сила. Практически каждый механизм состоит из рычагов, колёс и винтов, работа которых подчиняется закону сохранения энергии. Поэтому бесполезны любые попытки создать механизм, работающий без источника энергии (так называемый вечный двигатель).

Интересно проверить, смог бы Архимед выполнить своё обещание – поднять земной шар? Из справочника узнаём, что масса Земли m = 6*1024 кг. Значит, вес Земли «на земле» был бы равен mg = 6*1025 (Н). Вес Архимед вряд ли был больше 100 кг (103 Н). Допустим, он нашел точку опоры, установил свой рычаг, подвесил к длинному концу люльку и уселся в неё. Какой путь вниз должна пройти люлька с человеком, чтобы короткий конец рычага поднял бы Землю хотя бы на 0.1 м? Решение: шар весом 6*1025 (Н) на высоте h = 0.1 м получает потенциальную энергию Е = mgh = 6*1024 Дж. Эта энергия равна работе рычага Е=A = Ps, где Р – вес люльки с человеком. Отсюда: s = Е/P. Подставляя числа, получим: s = 6*1024/103 = 6*1021 (м). Это огромная дистанция. Известно, что свет проходит за год примерно расстояние 9.4*1015 м. В астрономии эту длину называют световым годом. Выразим путь Архимеда s в световых годах: s = 6*1021/9.4*1015 = 6.4*105 (световых лет). Это намного больше диаметра нашей Галактики. Заметим, для самого рычага не хватит места во всей Вселенной.

 

Раздел II. Электричество

 

Глава 3. Электрическое поле

 

Энергия электричества

 

В предыдущем разделе мы изучали механическую форму энергии, связанную с движением тел. Известно, что существует форма энергии, связанная с перемещением невидимых заряженных частиц. Это верно, что электроны невозможно увидеть. Зато электрический ток можно измерить. В данном разделе мы рассмотрим, как электрическое поле приводит в движение заряженные частицы и можно ли извлечь из этого пользу.

Следует признать, что объяснить электрические явления труднее, чем действие гравитации. Прошло почти двести лет после открытия Ньютоном закона всемирного тяготения, прежде чем Герц завершил теорию электромагнетизма, заложенную Максвеллом. В итоге выяснилось следующее. Во-первых, электрическое поле в миллиарды миллиардов раз сильнее тяготения. Именно электрические поля удерживают заряженные частицы вместе, обеспечивая стабильность формы тел. Влияние гравитации здесь можно даже не учитывать. Судите сами: каждый школьник может поднять гантель весом 30 Н. Но разорвать этот кусок железа не в силах вся олимпийская сборная по штанге.

Вдобавок, заряженные частицы, источники электрических полей, могут не только притягиваться, но и отталкиваться.

Значит, существуют два вида электрических полей.

Известно, что вещество содержит два сорта мельчайших заряженных частиц, действие которых полярно противоположно. Эти элементарные частицы были названы электронами и протонами. Более ста лет назад ученые договорились считать заряд протона положительным, а электрона – отрицательным. Лучше бы наоборот. Во-первых, работу в электрических сетях производят именно электроны. Было бы удобнее, если в уравнениях электромеханики электрон имел знак плюс. Во-вторых, в атоме потенциальная энергия электронов отрицательна, ведь их удерживают протоны ядра. Было бы справедливее приписать знак «минус» протону. К сожалению, электрон был открыт уже после признания теории электромагнетизма. Напомним, электрон отталкивается от электрона, но притягивается к протону. Протон отталкивается от протона, но притягивается к электрону.

Так как по абсолютной величине заряд электрона равен заряду протона, а в нормальных условиях их количество в теле одинаково, суммарное поле всех электронов нейтрализует суммарное поле всех протонов. Поэтому тела снаружи электрически нейтральны. Но когда за счет механической работы, например, при трении, на тело перескакивает хотя бы малая часть электронов, заряд протонов уже не в силах компенсировать заряд новых электронов и вокруг тела ощущается электрическое поле. Сила его так велика, что, снимая свитер, можно слышать, а в темноте даже видеть электрические искры, порой очень неприятные. Это электроны, переселившиеся на тело, пробивают воздух, перескакивая обратно под действием притяжения оставшихся избыточных протонов.

Роль электричества переоценить невозможно. Все наше оборудование устроено так, чтобы преобразовывать электрическую энергию в работу. Этот выбор объясняется тем, что электрическое поле можно почти мгновенно передать от источника к потребителю. Для этого электрооборудование соединяют проводами с электростанцией, где электрические генераторы производят электроэнергию. Электрическое поле концентрируется в проводах и практически без потерь доставляется к потребителю. Это оказалось настолько удобным, что даже если энергия где-то получается в виде тепла от сжигания топлива или от ядерных реакций, ее сначала преобразуют в электроэнергию, а уже потом распределяют по проводам, которые закольцованы в единую межрегиональную энергосеть. Когда житель Вологды включает люстру, возможно, он потребляет электроэнергию, произведенную на атомной электростанции в Сосновом Бору, или на Среднеуральской тепловой электростанции, или на Красноярской гидроэлектростанции. Единая энергосеть нужна для равномерного распределения электроэнергии по всей стране. Представьте мегаполис Санкт-Петербург, в котором миллион домохозяек зимним утром включает свет, пылесос и телевизор. Если город был бы подключен только к одной электростанции, никакой мирный атом не выдержал бы такой нагрузки. Заметим, в Омске в это время пылесосы уже выключены, потому что наступил обед, в Хабаровске ужинают, а в Анадыре кто-кто уже лег спать. Значит, излишек невостребованной на востоке страны электроэнергии можно перебросить почти со скоростью света на запад и избежать перегрузки в сети. Следует подчеркнуть, что со скоростью света перемещается только электрическое поле. Средняя скорость электронов в проводах составляет доли миллиметра в секунду. Так что на протяжении суток, а то и всей рабочей недели, в каждом регионе трудятся «свои» электроны. Эти местные трудяги выполняют огромную работу под действием электрического поля единой энергосети.

Возникает вопрос, как провода передают электрическое поле, если в нормальном состоянии они электрически нейтральны? Дело в том, что провода изготавливают из металлов, в которых имеется большое количество свободных электронов. Например, в меди, серебре и золоте на каждый атом вещества приходится один свободный электрон. Это огромная величина, учитывая количество атомов в одном кубическом сантиметре (порядка 1022). В отсутствие внешнего поля свободные электроны хаотически носятся между ядрами вещества. Но если к проводу приложить электрическое поле, свободные электроны устремятся навстречу полю, превращая энергию поля в работу. Упорядоченное перемещение электронов в веществе называют электрическим током, или просто током. Это ток вращает электромотор в пылесосе, кипятит воду в электрочайнике, заставляет сверкать огнями новогоднюю ёлку, в общем, производит работу.

 

Сила тока

 

Для получения тока нужно иметь электрическое поле. Это поля создают на электростанциях при помощи специальных машин – генераторов. Мы уже изучали работу устройства для преобразования энергии морских волн в электричество. В этой машине имелась малая катушка с током – активатор. Когда в проводе возникает ток, он течет, в основном, по его наружной поверхности. При этом поля электронов складываются, а провод становится источником электрического поля. Неподвижные протоны, которые находятся внутри проволоки, уже не могут компенсировать поле электронов вокруг провода. Если провод намотан на каркас в виде катушки, его поле усиливается многократно.

Катушку с железным сердечником внутри называют электрическим магнитом или электромагнитом. Так сложилось исторически. Люди с незапамятных времен имели дело с магнетитом – природным минералом, способным притягивать к себе железо. В древности из магнетита делали стрелки компаса. После опытов с электричеством выяснилось, что катушка с током тоже притягивает железо. Поэтому такие катушки стали называть электромагнитами, а само явление – электромагнетизмом. Электроны, подвижные источники электрического поля, были открыты значительно позже. Очевидно, внутри кристалла магнетита имеются природные кольцевые цепочки атомов, аналогично виткам провода в катушке. Вдоль этих цепочек атомов по замкнутым траекториям, как ток по виткам обмотки, перемещаются свободные электроны. Их немного, но достаточно, чтобы вокруг минерала постоянно существовало электрическое поле. Это поле вокруг магнетита в древности назвали магнитным. Если образец магнетита нагреть докрасна, он теряет магнитные свойства. Высокая температура разрушает цепочки атомов и магнетит превращается в обычную породу.

Для промышленности нужны мощные поля, сильные токи. Мощное электрическое поле получают, перемещая электроны в генерирующей обмотке промышленного генератора. Для этого обмотку генератора быстро вращают в поле электромагнита при помощи турбины – колеса с лопатками, на которые направляют поток воды или пара. Преимущество таких генераторов в том, что они не зависят от погоды. Управляя частотой вращения турбины, можно получать электрическое поле нужной мощности. Существуют генераторы, в которых вращают электромагнит, а генерирующую обмотку оставляют неподвижной. В любом случае необходимо перемещение витков генерирующей обмотки относительно электромагнита, иначе электроны в обмотке не сместятся и электрическое поле не возникнет.

Работу вращающегося электромагнита можно сравнить с работой насоса, который «перегоняет» своим полем электроны в обмотке генератора. Проникая в обмотку, поле электромагнита перемещает свободные электроны по её виткам. Электроны собираются на одном конце обмотки, который мы назовём отрицательным полюсом. Протоны, связанные в ядрах меди, остаются на месте. Тем не менее, на другом конце обмотки возникает положительный полюс, так как после «вымывания» электронов здесь преобладает заряд протонов. Если потребитель электроэнергии, например, электрочайник, соединить проводами с полюсами генератора, получится замкнутая цепь. Отрицательный полюс генератора будет выталкивать электроны в чайник по одному проводу, а положительный полюс – вытягивать их через другой провод. Отработавшие электроны возвращаются в генератор, который снова перегоняет их к отрицательному полюсу. Возникает электрический ток, который нагревает чайник до кипения (никогда не забывайте наливать воду в электрочайник).

Энергия тока, израсходованная в чайнике, пропорциональна, очевидно, количеству электронов, перенесенных полем через поперечное сечение провода за секунду. Эту величину называют силой тока и обозначают буквой I. Если заряд электрона равен q, а за время t через сечение прошло N электронов, то суммарный заряд равен Q = N q. Тогда сила тока равна:

I = Q / t (25.1).

Для удобства вычислений N нужно взять побольше, чтобы единица силы тока не получилась мелкой. Исторически сложилось, что за единицу принят заряд, равный сумме 6,25х1019 зарядов электронов. Единицу заряда назвали кулоном (Кл), а единицу силы тока назвали ампером (А). Из (25.1) следует, что один ампер равен 1 кулону в секунду. Один ампер это приличная сила тока. На стандартных, встроенных в стены электрических розетках можно прочитать: «220 вольт, 5 ампер». Число ампер указывает на предельно допустимую силу тока. Это означает, что к одной розетке можно подключить одновременно телевизор (1 А), электрокамин (2 А), электроутюг (2 А) и все. Кухонную электроплиту с рабочим током 10 А к такой розетке подключать не стоит. Розетка перегреется и сгорит (проверено на практике). Что такое «вольт», нам еще предстоит узнать.

 

Параметры тока

 

Электрическое поле генератора совершает работу A по перемещению заряда Q в цепи. Очевидно, чем больше величина работы, тем больший заряд перемещается в данную точку. Но мы не можем просто приравнять заряд к работе, так как работа измеряется в джоулях, а заряд в кулонах. Нужен переходный коэффициент. Обозначив его буквой φ, мы можем написать: A = φQ (26.1). Чтобы понять смысл параметра φ, перепишем (26.1) в виде: φ = A/Q (26.2). Если Q равен 1 Кл, из уравнения (26.2) следует, что φ = A. Другими словами, величина φ численно равна работе генератора для переноса заряда 1 Кл от полюса генератора в данную точку. Величину φ принято называть потенциалом электрического поля в данной точке. Очевидно, потенциал снижается от точки к точке, потому что при движении заряда от полюса к полюсу его энергия уменьшается. Если потенциалы в точках 1, 2 обозначить φ1, φ2, а их разность обозначить U, можно записать: U = φ1 – φ2 (23.3). Величину U называют электрическим напряжением. Единица измерения напряжения называется вольт (В). Разность потенциалов между разомкнутыми полюсами генератора исторически называют электродвижущей силой, или просто э.д.с. Следует сказать, что это никакая не сила, а просто разность потенциалов между полюсами, когда нет тока в цепи. Этот термин появился давно, когда первые исследователи считали, что заряды перемещает особая сила. Обозначают э.д.с. греческой буквой Є. Точные измерения показывают, что напряжение, когда есть ток в цепи, меньше э.д. с, когда тока нет. Это объясняется тем, что при разомкнутой внешней цепи согнанные к полюсу электроны остаются в генераторе и потенциал на отрицательном полюсе держится выше. Очевидно, э.д.с. равно разности потенциалов между полюсами генератора в отсутствие тока. Мы будем использовать термин «напряжение», как более современный.

С учетом (26.1) и (26.3) работа генератора по переносу заряда Q от точки 1 к точке 2 во внешней цепи равна: A = UQ (26.4). Разделив обе части (3.4) на время t работы генератора, получим: A/t = UQ/t (26.5). Учитывая, что Q/t = I, получаем: A/t = U I (26.6). Слева в (26.6) стоит механическая мощность генератора. Значит, справа стоит электрическая мощность тока, выраженная через электрические параметры: Р = U I (26.7). Для определения единицы напряжения перепишем уравнение (26.4) в виде: U = A/Q (26.8). Если в (26.8) А = 1 Дж, Q = 1 Кл, то 1 В = Дж/Кл. Для выражения единицы мощности через параметры тока воспользуемся (26.7). Если в уравнении (26.7): U = 1 В, I=1 А, то 1 Вт = 1 В А.

 

Ток в металлах

 

Возникает вопрос: если электрон в электрическом поле должен двигаться с ускорением, как любая частица в силовом поле, тогда почему электрический ток в проводе не растет до бесконечности? Дело в том, что ток в металлах не похож на ток в вакууме. В вакууме электроны, слегка расталкивая друг друга своими микрополями, летят, как полагается, с ускорением навстречу внешнему полю. Это похоже на массовый забег спортсменов в день физкультурника. В толще металла наблюдается другая картина. Здесь уже имеются связанные электроны, удерживаемые протонами в ядрах атомов металла. Эти связанные электроны притягиваются и к соседним ядрам, образуя вытянутые электронные оболочки, между которыми остается немного незанятого пространства. Под действием приложенного к проводу внешнего поля свободные электроны летят, натыкаются на электронные оболочки, отскакивают обратно, потом все же проскальзывают в щели между ними. Это напоминает игру в регби, когда атакующие налетают на защитников противника, останавливаются, порой отступают, но затем, изловчившись, пробегают сквозь дыры в обороне и мчатся вперед, к зачетной линии. В электротехнике этот эффект называют сопротивлением проводника электрическому току, или просто сопротивлением. Сопротивление обозначают буквой R. Таким образом, ток в проводнике существует в виде некоего среднего перемещения электронов через поперечное сечение провода вдоль его оси.

Опытами установлено, что сила тока в металлах пропорциональна напряжению U на участке цепи и обратно пропорциональна сопротивлению R участка. Эту зависимость можно записать в виде уравнения: I = U / R (27.1). Это уравнение является важнейшим в теории электричества. Его открыл Георг Ом. В его честь уравнение (27.1) называют законом Ома. Если (27.1) переписать как: R= U/I и принять U = 1 В, а I = 1 А, то сопротивления R будет равно1 Ом. Значит, 1 Ом = В/А.

Очевидно, чем длиннее провод, тем больше его сопротивление. С другой стороны, чем больше площадь его сечения, тем больше «щелей» между электронными оболочками, тем меньше сопротивление. Наконец, сопротивление зависит от вида металла провода. Эти технические параметры, в общем, уже определяют сопротивление R провода по формуле:

R = ρ l /S (27.2),

где l = длина провода, S – площадь его сечения, ρ – удельное сопротивление данного металла (берется из справочника). Например, медный провод длиной 1 м и сечением 1 мм2 имеет сопротивление около 0,02 Ом. Столбик ртути длиной 1 м и сечением 1 мм2 имеет сопротивление почти 0,96 Ом. Указывая сечение в мм2, а не в м2, мы немного отошли от системы СИ ради здравого смысла, так как провода с сечением жилы 1 м2 в жизни не встречаются.

Задача. Корпус станка заземлен (соединен с землей) алюминиевым проводом диаметром 2 мм и длиной 15 м.

Найти сопротивление заземления.

Решение: S = π D2 /4 = 3,14 х 22 / 4 = 3,14 (мм2). В справочнике находим для алюминия значение ρ = 0,028. Подставляя в формулу (27.2) получаем: R = 0,028 х 15 / 3.14 = 0,134 (Ом).

Сопротивление металлов увеличивается с ростом температуры t. Объясняют это тем, что с повышением температуры ядра в узлах кристаллической решетки вещества колеблются быстрее и щели между их электронными оболочками перекрываются чаще. Зависимость сопротивления металла от температуры принято записывать в виде: ρ = ρ0 (1+α t), (27.3), где ρ0 – удельное сопротивление металла при t = 0, α – температурный коэффициент сопротивления данного металла. Его значение тоже берут из справочника.

 

Полупроводники

 

По концентрации свободных электронов полупроводники (а к ним относятся кристаллы углерода, кремния, германия и некоторые другие) занимают промежуточное положение между металлами и диэлектриками (изоляторами). Если взять слиток чистой меди объемом 1 см3, то в нем будет около 1022 свободных электронов, причем это число не зависит от температуры. В таком же кубике фарфора при любой температуре насчитывается не более сотни свободных электронов, что почти ничего. Именно поэтому из меди делают провода, а из фарфора – изоляторы (лучшие изоляторы получаются из китайского фарфора). Из полупроводников делают интегральные микросхемы, основу современной электроники.

Кристалл кремния объемом 1 см3 при температуре 0 ºC одержит порядка 1013 свободных электронов, а кристалл германия – почти 1014. По данному параметру кремний и германий находятся посередине между металлами (1022) и изоляторами (102). Поэтому их назвали полупроводниками. Другим признаком полупроводника является то, что при нагревании концентрации свободных электронов в нем увеличивается. Чтобы понять, как в кристалле появляются свободные электроны, надо вспомнить, как они удерживаются в узлах решетки.

Считается, что закон притяжения заряженных частиц открыл Кулон. При этом забывают, что Кулон фактически открыл два закона. Первый закон устанавливает силу, с которой отталкиваются две одноименно заряженных частицы, имеющие заряды q1 и q2, на расстоянии r: F1 = K1q1q2/ r2 (28.1), где К1 – первая постоянная Кулона. Второй закон Кулона устанавливает силу, с которой притягиваются две разноименно заряженных частицы: F2 = – K2 q1 q2 / r2 (28.2), где К2– вторая постоянная Кулона. Знак минус стоит потому, что произведение зарядов с противоположными знаками всегда меньше нуля. Поэтому сила притяжения отрицательна. В отличие от Кулона, который жил в XVIII веке и ничего не знал о протонах и электронах, мы не можем заранее полагать, что электрон отталкивается от электрона с такой же силой, с какой притягивается к протону. Именно поэтому мы разделили закон Кулона на два уравнения. Новейшие измерения показывают, что К1 = К2 = К = 1/4πε0 = 9,0 х 109 (В м/Кл) вплоть до внутриатомных расстояний. Если K1 отличается от K2, то на расстоянии меньше, чем 10-13 м. Этот результат странным образом созвучен с выводом из теории гравитации Логунова, согласно которому расхождение между инерционной и гравитационной массами наступает после 13-го знака после запятой. Возможно, «релятивистская» теория электричества еще ждет своего автора.

 

Запрещённая зона

 

Напомним, что кремний является 14-м элементом в таблице Менделеева. Это значит, что атом кремния содержит 14 протонов и 14 электронов. Электроны в атоме кремния размещаются в трех оболочках. Внутренняя оболочка содержит 2 электрона, средняя – 8. Известно, что эти электроны в образовании кристалла не участвуют. В наружной оболочке содержится 4 электрона, которые связывают атомы в кристаллическую решетку. Можно считать, что в узле решетки находится ион с зарядом +4, вокруг которого вращаются 4 электрона.

Вообще говоря, строение атомов детально изучают в разделе «Атомная физика». Для нас важно выяснить, как в полупроводнике появляются свободные электроны. Для этого составим уравнение Кулона в виде: F = – KqQ/r2 (29.1), где q – заряд электрона, Q – заряд иона в узле решетки, r – средний радиус орбиты электрона связи (или просто электрона). Знак минус указывает, что электрон заряжен отрицательно. Перепишем (28.2) в виде: F r = – K q Q/r (29.2). Слева в (29.2) стоит значение работы A по перемещению электрона от центра атома на расстояние r: A = F r (29.3). Разделим (29.3) на q. Тогда можно написать: A/q = – K Q/r (29.4). Известно, что A/q = φ. Значит, потенциал поля ядра на расстоянии r равен: φ = – K Q/r (29.5). Из (29.5) следует, что потенциальная энергия W электрона, связанного в атоме, отрицательна: W = A = φ q = – K q Q/r (29.6).

Уравнения (29.1 – 29.6) описывают состояние кристалла при сверхнизкой температуре, порядка – 270º С, когда все электроны занимают свои места в атомах, а свободных электронов просто нет. С повышением температуры возникают тепловые колебания кристаллической решетки, которые периодически растягивают электронные оболочки. Радиус r орбиты электрона периодически увеличивается, значит, энергия W электрона уменьшается. Если электрон получит порцию тепловой энергии, которая превысит абсолютное значение энергии связи W из (29.6), связь электрона с решёткой будет нарушена. Проще говоря, электрон будет оторван от решетки и выброшен в пространство между ионами, где превратится в свободный электрон проводимости. При этом в атоме, связанном в узле решётки, останется вакантное место – так называемая «потенциальная дырка» или просто дырка для электрона.

Заметим, что энергию свободного электрона следует считать положительной, так как он удалился от «своего» ядра на расстояние, намного превышающее максимальный радиус атома в узле решетки. Разность между минимальной энергией свободного электрона и максимальной энергией электрона, связанного в решетке, называют шириной запрещенной зоны. Этим подчеркивают, что в кристалле не может быть электрона с энергией из данного интервала значений. Или электрон связан с атомом – тогда его энергия определяется (29.6), или электрон свободен – тогда его энергия больше нуля. Каждый полупроводник характеризуется своей шириной запрещенной зоны. Например, у кремния она больше, чем у германия, но меньше, чем у алмаза. Если ширину запрещенной зоны обозначить ΔW, то для чистого кристалла можно написать: /ΔW/ = K q Q/r, (29.7), где К = 1/4πε0.

Заметим, что джоуль слишком большая величина для измерения энергии электрона. Для него придумана единица электрон-вольт (эВ). Один эВ = 1 В*qe, где qe – заряд электрона. К примеру, если для алмаза ΔW = 2 эВ, это значит, что к валентному электрону необходимо приложить поле с напряжением 2 В, чтобы вырвать его из узла решетки. Для полупроводника это приличная ширина зоны. У бора она еще больше. Поэтому бор по сопротивлению ближе к изоляторам, хотя его проводимость увеличивается с температурой, как у полупроводника. Сравнительно недавно технологи научились выращивать полупроводниковые кристаллы из смеси теллура, кадмия и ртути. Изменяя процентное соотношение этих компонентов, можно уменьшить ширину запрещенной зоны кристалла практически до нуля. Это открытие позволило создать уникальные оптические приборы, такие, как инфракрасные телескопы и тепловизоры.

 

Ток в полупроводниках

 

Появление дырки вместо электрона связи не остается незамеченным для других атомов. В эту дырку может легко заскочить электрон связи от соседнего атома, так как для этого нужно гораздо меньше энергии, чем для освобождения электрона. Тогда дырка останется в соседнем атоме. В нее может запрыгнуть электрон из следующего атома, при этом дырка образуется в следующем атоме. Создается иллюзия, что в поле отрицательных энергий, ниже запрещенной зоны, перемещаются дырки. Перемещение связанных электронов от узла к узлу кристаллической решетки через дырки в связях называют дырочным током. При определенных условиях дырочный ток даже может иметь преимущество. Таким образом, в полупроводниках существует как электронная, так и дырочная проводимость.

Концентрация свободных электронов в кристалле кремния в миллиард раз меньше, чем в меди. Это очень мало. Чтобы повысить проводимость полупроводника, в него добавляют примеси. Если надо повысить электронную проводимость, добавляют немного пятивалентного мышьяка, если хотят повысить дырочную – добавляют трехвалентный индий. В первом случае пятый валентный электрон мышьяка, не найдя себе ковалентную пару у ближайшего атома кремния, оказывается лишним и почти сразу отрывается от решетки. Даже сотая доля процента примеси мышьяка может увеличить электронную проводимость кристалла кремния в десятки тысяч раз. При добавлении индия его три валентных электрона вступают в ковалентную связь только с тремя внешними электронами атома кремния. Четвертый электрон кремния остается без пары, что означает появление лишней дырки. Таким образом, в зависимости от вида примеси получается полупроводник с избытком электронов (n – типа) или с избытком дырок (p-типа). Вообще говоря, технология полупроводников получила в наши дни такое развитие, что её описание может занять не одну полку книг. Тем не менее, расскажем о главном достижении техники полупроводников, о p -n переходе.

Как говорят электронщики, один p-n переход – это диод, два – транзистор. Иногда можно услышать, что p-n переход можно получить, если создать контакт между полупроводниками с различными типами проводимости. Это не совсем так. До появления нанотехнологий p-n переход изготавливали на чистом кристалле в виде тонкой пластинки (чипа). К одной стороне чипа припаивали шарик индия, к другой – прикрепляли крупинку мышьяка. Затем чип нагревали в духовке. При высокой температуре атомы примесей проникали вглубь кристалла с двух сторон. После расчетного времени чип извлекали. Со стороны мышьяка получался полупроводник n-типа (электронная проводимость), со стороны индия – p-типа (дырочная проводимость). В середине оставался очень тонкий пограничный слой, имевший собственную проводимость. В целом все это называлось p-n переход, важнейшим свойством которого является односторонняя проводимость электрического тока. Для подвода внешнего поля к области n-типа припаивали катод, к области p-типа – анод. Получился электронный прибор, который назвали полупроводниковым диодом.

Если анод диода соединить с положительным полюсом источника поля, а катод – с отрицательным, электроны в n-области начнут отталкиваться от отрицательного полюса и устремятся навстречу положительному полюсу. Они легко преодолеют узкий n-p переход и попадут в p-область, где мало электронов, зато много дырок, обеспечивающих электронам высокую подвижность. Таким образом, для прямого направления поля диод имеет небольшое сопротивление (порядка несколько Ом), и прямой ток получается большим. Но если к диоду приложить обратное внешнее поле, картина меняется. Электроны из n-области отхлынут к положительному полюсу источника поля, а дырки из p-области отойдут к отрицательному полюсу. Ширина пограничного слоя, из которого ушли даже собственные электроны, резко увеличится. Сопротивление диода резко поднимется (до сотен кОм) и обратный ток упадет практически до нуля. Таким образом, p-n переход обладает односторонней проводимостью. Это свойство позволяет использовать его в технике, когда, например, нужно выпрямить переменный ток (о переменном токе немного позже).

 

Ток в электролитах.

 

В этой теме всегда используется так много химических понятий, что ее следовало бы перенести в раздел «Электрохимия», если бы не два «но». Во-первых, ни одно переносное устройство типа плейера или фотокамеры не работает без «батареек» – сухих гальванических элементов. Вовторых, в некоторых учебниках до сих пор можно встретить фразу типа «под действием электрического тока в электролите положительные протоны отдают свои заряды медному электроду и превращаются в водород». Согласиться с этим невозможно. Протон не может отдать свой заряд, потому что он сам и есть заряд. Кроме того, в электролите нет другого тока, кроме движения протонов (и анионов). Поэтому мы постараемся разобраться в электролизе хотя бы из уважения к великому физику Майклу Фарадею, который придумал понятие поля, открыл законы электролиза и многое другое.

Электролизом называется прохождение электрического тока через проводящую жидкость – электролит. К электролитам относятся растворы солей, кислот, щелочей и других веществ, распадающихся в воде на ионы. Например, серная кислота при растворении в воде распадается на два протона и отрицательно заряженный ион SO4. (мы предупреждали, что здесь будет больше химии, чем физики). Так как в быту нам чаще приходится менять «батарейки», рассмотрим процессы, происходящие в гальваническом элементе.

Представим стеклянный стакан, в который налили водный раствор серной кислоты. Стакан накрыли крышкой, сквозь которую пропустили два электрода, медный и цинковый. Если к электродам подключить вольтметр (прибор для измерения напряжения), то он покажет разность потенциалов чуть больше 1 В. Откуда она взялась? В электролите положительные протоны и отрицательные ионы SO4 окружают электроды, в которых имеются свободные электроны, причем в меди их больше, чем в цинке. Эти электроны скачут во всех направлениях, в том числе и к поверхности электрода. Когда на поверхности электрода появляется свободный, отрицательно заряженный электрон, к нему сразу прилипает положительный протон. Протон захватывает электрон и превращается в нейтральный атом водорода. Так как медь имеет свободных электронов больше, чем цинк, значит, при одинаковой температуре электроны чаще появляются на медном электроде, и чаще захватываются протонами. Мы уже знаем, что если с поверхности тела удалить часть электронов, тело зарядится положительно (вспомним электризацию тела трением). Таким образом, медный электрод заряжается положительно относительно цинкового и внутри электролита довольно скоро возникает электрическое поле, направленное от медного электрода к цинковому. Это поле замедляет приток протонов к медному электроду. Когда разность потенциалов на электродах достигает максимума, ток в электролите прекращается. В отсутствие тока разность потенциалов равна э.д.с. Измерения показывают, что э.д.с. такого гальванического элемента составляет 1,1–1,2 В.

Для повышения э.д.с. химического источника медный электрод заменяют угольным, а вместо кислоты применяют пасту из крахмала, пропитанного хлористым аммонием. Кроме того, для удаления выделяющегося водорода, который снижает э.д.с., угольный электрод погружают в перекись марганца. Благодаря этим мерам удается получить в угольно-цинковом элементе э.д.с. около 1.5 В, что совсем неплохо. Такие гальванические элементы в быту называются «батарейки». Они выпускаются в огромных количествах и продаются везде.

 

Законы электролиза

 

Возникает вопрос: как электрический ток связан с количеством вещества, выделяющегося при электролизе? Мы уже выяснили, что при захвате из электрода одного электрона рождается один атом водорода. Если через электрод проходит заряд, равный 1 кулону, то из электролита выделяется 6,25 х 1019 атомов водорода. Масса протона равна 1,672х10-25 г. Перемножив эти величины, получаем, что при прохождении 1 Кл электричества из электролита выделяется 0,0104 г газа водорода. В принципе, это уже ответ (для водорода).

Фарадей работал с медным купоросом Cu SO4, так как медь взвешивать легче, чем водород. Пропуская ток от внешнего источника через раствор с медным купоросом, он получил аналогичный результат (точнее, наш результат аналогичен результату Фарадея): масса меди, выделившейся при электролизе купороса, прямо пропорциональна количеству электричества, прошедшего через электролит: m = K Q (32.1). Это уравнение называют первым законом Фарадея. Коэффициент K, численно равный массе вещества, выделившейся после одного кулона электричества, называют электрохимическим эквивалентом вещества.

Следует заметить, что уравнение (32.1) справедливо только для одновалентных атомов. Судите сами: чтобы осадить из электролита двухвалентный ион, потребуется не один, а два электрона. Значит, после одного кулона электричества двухвалентных атомов осядет в два раза меньше. Чтобы распространить первый закон на многовалентные атомы, Фарадей ввел понятие химического эквивалента. Если A – атомный вес элемента, а Z – его валентность, то химический эквивалент равен A/Z. После этого Фарадей записал уравнение электролиза в виде: K = C A/Z (32.2). Уравнение (32.2) называют вторым законом Фарадея. Константа C не зависит от валентности атома, так как в уравнении фигурирует не абсолютный вес атома, а его химический эквивалент. Физический смысл константы C несколько затуманен тем, что уравнение (32.2) записано как бы в зеркальном виде. Так сложилось исторически. Мы перепишем его в виде обратной функции: A/Z = F K (32.3), где F – постоянная Фарадея, равная 1/C. Из (32.1) следует, что K = m/Q. Подставляя выражение для К в (32.3), получим: A/Z = F m/Q, или: (A/Z)/m = F/Q (32.4). Если в (32.4) положить A/Z = m, то F/Q = 1, откуда следует: F = Q (32.5). Это означает, что постоянная Фарадея численно равна заряду Q, который нужно пропустить через электролит, чтобы выделить на электроде массу m вещества, равную его химическому эквиваленту A/Z. Нетрудно подсчитать, что величина F равна почти 96 500 кулонам. Это приличное количество электричества.

В заключение отметим следующее. Электрическое поле от внешнего источника, являющееся причиной ионного тока в электролите, создает в электродах электронный ток. Тем не менее, измеряя электронный ток во внешней цепи, Фарадей говорил об ионном токе в электролите. Он имел право так делать потому, что ток отрицательных электронов в электродах всегда равен току положительных ионов в электролите, при этом абсолютная сумма всех зарядов равна нулю. Этот закон, который называют законом сохранения заряда, играет в электричестве такую же роль, какую играет закон сохранения импульса в механике.

 

Диэлектрики

 

Диэлектриками называют материалы, не проводящие электрический ток. Гибкие диэлектрики используют для изоляции проводов. Кроме того, многие диэлектрики ослабляют электрическое поле. Рассмотрим это явление. Поскольку кулоновскую силу измерять не просто, мы будем измерять напряжение на конденсаторе. Простейший конденсатор содержит пару параллельных металлических пластин с проводами для соединения с источником поля.

Пластины называют обкладками конденсатора.

Соединим обкладки конденсатора с полюсами генератора. После включения генератор начнет вытягивать своим полем электроны из одной обкладки конденсатора и направлять их в другую. Возникнет зарядный ток, а между обкладками появится напряжение U, пропорциональное заряду электронов Q, накопившихся на отрицательной обкладке. Можно написать: Q = C*U (33.1), где С – коэффициент пропорциональности. Когда U сравняется с э.д.с. генератора, зарядный ток прекратится, так как потенциал на отрицательной обкладке станет равным потенциалу на отрицательном полюсе генератора. Это произойдет достаточно быстро, учитывая подвижность электронов.

Если генератор отключить, в конденсаторе останется заряд, величина которого зависит от площади S обкладок и расстояния d между ними. Перепишем (33.1) в виде: C = Q/U (33.2). Отсюда следует, что коэффициент C численно равен заряду, который может принять данный конденсатор при напряжении между обкладками, равном 1 В. Параметр C называется емкостью конденсатора. Измеряется емкость в фарадах (ф). Одна фарада равна кулону на вольт. Это большая емкость. На практике емкость конденсаторов измеряют в микрофарадах (мкф), нанофарадах (нф) и даже в пикофарадах (пф).

Рассмотрим структуру электрического поля между обкладками сухого конденсатора. В процессе зарядки электроны вытесняются полем генератора на поверхность одной обкладки, где они равномерно распределяются по всей ее площади. Суммарному заряду Q электронов на данной обкладке соответствует равный по величине заряд протонов на другой обкладке. Между этими зарядами возникают кулоновские силы притяжения. Заметим, что обкладки нельзя считать точечными зарядами, так как зазор d намного меньше длины и ширины обкладки. Из ситуации можно выйти, если ввести понятие поверхностной плотности заряда (σ): σ = Q / S. Площадь обкладки разбивают на множество малых площадок s, заряд Q распределяют в виде элементарных зарядов q по площадкам s. Тогда для любого зазора d можно выбрать такую малую площадку, что заряд на ней будет точечным. Если каждый точечный заряд на положительной обкладке соединить условной линией с точечным зарядом на отрицательной обкладке напротив, получится множество линий, вдоль которых направлены кулоновские силы. Очевидно, это будут одинаковые параллельные отрезки на равных расстояниях между ними. Это означает, что электрическое поле внутри конденсатора всюду имеет одинаковую величину и направление. Такое поле называют однородным. Сила однородного поля одинакова по величине и направлению в любой точке между обкладками.

Представим, что элементарный заряд q переместился от одной обкладки к другой. При этом электрическое поле конденсатора произвело механическую работу A = Fd, где F – кулоновская сила. Согласно (26.4), электрическая энергия заряда изменилась на величину Uq, где U – напряжение между обкладками. Значит, можно написать: Fd = Uq (33.3). Перепишем (33.3) в виде: F/q = U/d (33.4). Величину F/q, равную KQ/r2, принято называть напряженностью электрического поля или просто полем Е: E = U/d (33.5). Это уравнение выражает поле внутри конденсатора через разность потенциалов на обкладках. Поля других тел, например, провода или пластины, можно вычислить при помощи теоремы Гаусса.

 

Теорема Гаусса

 

Следует заметить, что теорему Гаусса, которая связывает величину заряда Q с электрическим полем Е вокруг этого заряда, в отечественной литературе принято называть теоремой Остроградского – Гаусса. Считается, что русский учёный Остроградский доказал эту теорему независимо от Гаусса. Не вдаваясь в споры о приоритете, покажем, что теорема Остроградского-Гаусса элементарно выводится из закона Кулона. Напомним, что закон Кулона имеет вид: F = Qq/4πε0r2 (34.1), где Q – заряд тела, q – малый (пробный) заряд, r – расстояние от тела до малого заряда, ε0 – электрическая постоянная. Полем E мы по прежнему называем отношение силы F к малому заряду q: E = F/q.

Перепишем (34.1) в виде: E = Q/(4π ε0 r2) или: E*4π r2 = Q/ε0 (34.2). Слева в (34.2) стоит поле E, умноженное на площадь поверхности сферы радиуса r: 4π r2 = S0. Произведение любого поля на площадь поверхности, через которую это поле проходит, Фарадей назвал потоком поля Ф. Тогда можно написать: Ф = Q/ε0 (34.3). Уравнение (34.3) называют теоремой Остроградского – Гаусса. Согласно этой теореме, поток Ф электрического поля Е через замкнутую поверхность равен зарядуQ внутри нее, деленному на ε0. Значение универсальной постоянной ε0 равно 0,885х10-11 ф/м.

Задача. Вычислить напряженность электрического поля Е для провода диаметром 2 r вблизи его поверхности.

Решение. Опытами доказано, что свободные электроны размещаются главным образом на поверхности заряженного тела, потому что их вытесняют поля связанных электронов. Выберем участок провода длиной l с площадью поверхности s = 2π r l. Теорема Гаусса для провода имеет вид: Ф = E s = E 2π r l = Q/ε0, откуда E = Q/(2π r l ε0). Введем понятие линейной плотности заряда провода: λ = Q/l, тогда для провода: E = λ/(2π r ε0) (343.4). Это есть ответ.

 

Поле конденсатора

 

Вернемся к вопросу об ослаблении электрического поля диэлектриком. Поместим наш конденсатор в аквариум, зарядим его и отключим от генератора. Затем в аквариум нальем диэлектрик – дистиллированную воду. Если сейчас измерить напряжение U1 на обкладках конденсатора, мы увидим, что оно уменьшилось почти в 90 раз! Из (8.5) следует, что для сухого конденсатора U = E d (35.1). Тогда для конденсатора с диэлектриком можно написать U1 = U/ε, или E1 = E/ε (35.2), где ε – коэффициент ослабления поля. Величину ε принято называть диэлектрической проницаемостью, хотя она характеризует не проницаемость, а ослабление поля диэлектриком. (Справедливости ради заметим, что вместо понятия сопротивления в теории электричества часто используют понятие проводимости, которое имеет противоположный смысл). Для каждого диэлектрика ε имеет своё значение. Для ряда веществ значения ε измерены и сведены в таблицу.

Возникает вопрос: как этот эффект можно использовать в технике? Подключим снова конденсатор в аквариуме к генератору. Так как напряжение U1 меньше э.д.с. генератора в ε раз, ток зарядки возобновится. Заряжание конденсатора продолжится до того, когда напряжение U1 станет равным э.д.с. генератора. При этом заряд увеличится в ε раз. Это означает, что емкость С1 конденсатора с диэлектриком увеличилась в ε раз относительно емкости C сухого конденсатора. Таким образом, применение диэлектриков позволяет изготавливать конденсаторы небольших размеров, но с большой емкостью.

Попробуем объяснить это явление. Из химии известно, что молекулы воды частично распадаются на протоны H+ и ионы гидроксила OH-. Протоны стремятся к отрицательной обкладке, частицы гидроксила – к положительной. Облепив отрицательную обкладку, протоны частично нейтрализуют ее поле, снижая потенциал φ. Ионы гидроксила облепляют положительную обкладку и тоже снижают ее потенциал. Кроме того, молекула H2O имеет свое поле, так как она сферически несимметрична. Такие молекулы называются полярными. В целом нейтральные, молекулы Н2О разворачиваются вдоль поля конденсатора. Так в объеме диэлектрика возникает комбинированное встречное поле, которое существенно нейтрализует поле конденсатора. Можно сказать, электроэнергия дополнительно запасается в диэлектрике в форме энергии внутренних полей, что существенно увеличивает емкость конденсатора.

Можно предположить, что диэлектрическая проницаемость диэлектриков должна зависеть от плотности вещества и от подвижности носителей внутренних полей. В твердых диэлектриках полярные молекулы связаны и могут только поворачиваться на небольшой угол навстречу полю. Поэтому твердые диэлектрики должны иметь сравнительно небольшую величину ε, что подтверждается измерениями. Например, для фарфора ε составляет от 4 до 7 единиц (зависит от марки фарфора). Это намного меньше, чем у воды. Наименьшей величиной ε обладает вакуум, для него ε = 1. Для воздуха (смесь азота и кислорода) величина ε = 1.0006, почти как у вакуума. Низкая проницаемость воздуха объясняется его малой плотностью.

 

 

ЧАСТЬ II

 


Дата добавления: 2020-04-25; просмотров: 76; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!