ТЕПЛООБМЕННИКИ ТИПА ТП, ОБЛАСТЬ ПРИМЕНЕНИЯ. КОНСТРУКЦИЯ ТЕПЛООБМЕННИКА С ПЛАВАЮЩЕЙ ГОЛОВКОЙ. КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ ПЛАВАЮЩЕЙ ГОЛОВКИ. РАЗБОРКА И СБОРКА.



Теплообменные аппараты с плавающей головкой типа ТП (с подвижной трубной решеткой) являются наиболее распространенным типом поверхностных аппаратов (рис. 2.30). Подвижная трубная решетка позволяет трубному пучку свободно перемещаться независимо от корпуса. В аппаратах этой конструкции температурные напряжения могутивозникать лишь при существенном различии температур трубок.

Теплообменники этой группы стандартизованы по условным давлениям ру = 1,6…6,4 МПа, по диаметрам корпуса 325…1400 мм и поверхностям нагрева 10…1200 м2 с длиной труб 3...9 м. Масса их достигает 35 т. Теплообменники применяют при температурах до 450 °С.

В ТОА подобного типа трубные пучки сравнительно легко могут быть удалены из корпуса, что облегчает их ремонт, чистку или замену.

Горизонтальный двухходовой конденсатор типа ТП состоит из кожуха 10 и трубного пучка. Левая трубная решетка 1 соединена фланцевым соединением с кожухом и распределительной камерой 2, снабженной перегородкой 4. Камера закрыта плоской крышкой 3. Правая, подвижная, трубная решетка установлена внутри кожуха свободно и образует вместе с присоединенной к ней крышкой 8 «плавающую головку». Со стороны плавающей головки аппарат закрыт крышкой 7. При нагревании и удлинении трубок плавающая головка перемещается внутри кожуха.

Для обеспечения свободного перемещения трубного пучка внутри кожуха в аппаратах диаметром 800 мм и более трубный пучок снабжают опорной платформой 6. Верхний штуцер 9 предназначен для ввода пара и поэтому имеет большое проходное сечение; нижний штуцер 5 пред назначен для вывода конденсата и имеет меньшие размеры.

Значительные коэффициенты теплоотдачи при конденсации практически не зависят от режима движения среды. Поперечные перегородки межтрубного пространства этого аппарата служат лишь для поддержания труб и придания трубному пучку жесткости.

Аппараты с плавающей головкой обычно выполняют одноходовыми по межтрубному пространству, однако установкой продольных перегородок в межтрубном пространстве можно получить многоходовые конструкции.

Хотя в аппаратах типа ТП обеспечивается хорошая компенсация температурных деформаций, эта компенсация не является полной, поскольку различие температурных расширений самих трубок приводит к короблению трубной решетки. В связи с этим в многоходовых теплообменниках типа ТП диаметром более 1000 мм при значительной (выше 100 °С) разности температур входа и выхода среды в трубном пучке, как правило, устанавливают разрезную по диаметру плавающую головку.

Наиболее важный узел теплообменников с плавающей головкой — соединение плавающей трубной решетки с крышкой. Это соединение должно обеспечивать возможность легкого извлечения пучка из кожуха, аппарата, а также минимальный зазор Δ между кожухом и пучком труб. Вариант, показанный на рис. 2.32, позволяет извлекать трубный пучок, но зазор Δ получается больше (по крайне мере, чем в теплообменниках типа ТН) на ширину фланца плавающей головки. Крепление по этой схеме наиболее простое; его часто применяют в испарителях с паровым пространством.

Размещение плавающей головки внутри крышки, диаметр которой больше диаметра кожуха, позволяет уменьшить зазор; но при этом усложняется демонтаж аппарата, так как плавающую головку нельзя извлечь из кожуха ТОА

(рис. 2.33).

Конструкции крепления ПГ с трубной решеткой, позволяющие легко извлекать трубный пучок из кожуха при минимальном зазоре Δ между трубным пучком и кожухом, показаны на рис. 2.34. В одном из таких простых соединений использованы разрезные фланцы (рис. 2.34а). Конструкция включает разрезной фланец 1 (состоит из двух полуколец, стянутых ограничительным кольцом 2), уплотняющую прокладку 3, крышку 4 плавающей головки и трубную решетку 5.

Широко распространены соединения фланцевой скобой 2 (рис. 2.34б), представляющей собой приспособление типа струбцины. Соединение состоит из двух полуколец, охватывающих край трубной решетки 4 и фланец 3 крышки. Винты 1 должны быть расположены посередине уплотнения, что обеспечивает разгрузку фланца от изгибающих моментов.

Широко применяют также крепление крышки и трубной решеткиразрезным кольцом , половинки которого соединены между собой накладками . В другой конструкции накидной фланец  удерживается разрезным кольцом , вставленным в паз трубной решетки.

Теплообменники этой группы стандартизованы по условным давлениям Ру=1,6 – 6,4 МПа, по диаметрам корпуса 325–1400 мм и поверхностям нагрева 10–1200 м2 с длиной труб 3–9 м. Масса их достигает 35 т. Теплообменники применяют при температурах до 450 °С.

36. ТЕПЛООБМЕННИКИ ТИПА «ТРУБА В ТРУБЕ», УСТРОЙСТВО И ПРИНЦИП РАБОТЫ, СЕКЦИОНИРОВАНИЕ. ОБЛАСТЬ ПРИМЕНЕНИЯ, КОМПЕНСАЦИЯ ТЕМПЕРАТУРНЫХ УДЛИНЕНИЙ.

Теплообменные аппараты «труба в трубе» используют главным образом для охлаждения или нагревания в системе жидкость-жидкость, когда расходы теплоносителей невелики и последние не меняют своего агрегатного состояния. Иногда такие теплообменники применяют при высоком давлении для жидких и газообразных сред, например, в качестве конденсаторов в производстве метанола, аммиака и др. Также их используют для загрязненных коксообразующими веществами и механическими примесями теплоносителей, в которых обеспечивается хороший теплообмен за счет больших скоростей и турбулентности потоков в трубном и межтрубном пространствах. Высокие скорости и турбулентность потока уменьшают возможность отложения на стенках труб кокса или других образований.

По сравнению с кожухотрубчатыми теплообменники «труба в трубе» имеют меньшее гидравлическое сопротивление межтрубного пространства. Однако при равных теплообменных характеристиках они менее компактны и более металлоемки, чем кожухотрубчатые.

Теплообменники «труба в трубе» могут быть разборными или неразборными, одно- и много-поточными.

Однопоточный неразборный теплообменник (рис. 2.49) состоит из отдельных звеньев, в каждый из которых входят трубы наружная (или кожуховая) 1 и внутренняя (или теплообменная) 2. Наружная труба двумя приварными кольцами связана с внутренней трубой 2 в звено. Звенья, в свою очередь, собраны в вертикальный ряд и составляют теплообменную секцию. При этом внутренние трубы соединены между собой коленами 3, а наружные — штуцерами 4 на фланцах или сваркой. Звенья закреплены скобами на металлическом каркасе 5.

Нетрудно видеть, что неразборные теплообменники являются конструкцией жесткого типа, поэтому при разности температур более 70 °С их не используют. При большей разности температур труб, а также при необходимости механической очистки межтрубного пространства применяют теплообменники с компенсирующим устройством на наружной трубе. В этом случае кольцевую щель между трубами с одной стороны наглухо заваривают, а с другой — уплотняют сальником 6.

Однопоточные неразборные теплообменники изготовляют из труб длиной 3…12 м с диаметром внутренних труб 25…159 мм и наружных соответственно 48… 219 мм на условное давление для наружных труб до 6,4 МПа и для внутренних до 16 МПа.

В разборных конструкциях теплообменников обеспечивается компенсация деформаций теплообменных труб. На рис. 2.50 показана конструкция разборного многопоточного теплообменника «труба в трубе», конструктивно напоминающего кожухотрубчатый теплообменник типа ТУ.

Аппарат состоит из кожуховых труб 5, развальцованных в двух трубных решетках: средней 4 и правой 7. Внутри кожуховых труб размещены теплообменные трубы 6, один конец которых жестко связан с левой трубной решеткой 2, а другой — может перемещаться. Свободные концы теплообменных труб попарно соединены коленами 8 и закрыты камерой 9. Для распределения потока теплоносителя по теплообменным трубам служит распределительная камера 1, а для распределения теплоносителя в межтрубном пространстве — распределительная камера 3. Пластинами 11 кожуховые трубы жестко связаны с опорами 10.

Теплообменник имеет два хода по внутренним трубам и два по наружным. Узлы соединения теплообменных труб с трубной решеткой (узел I) и с коленами (узел II) уплотнены за счет прижима и деформации полушаровых ниппелей в конических гнездах.

Эти аппараты могут работать с загрязненными теплоносителями, так как внутреннюю поверхность теплообменных труб можно подвергать механической очистке. Поскольку возможность температурных удлинений кожуховых труб из-за жесткого соединения их с опорами ограниченна, перепад температур входа и выхода среды, текущей по кольцевому зазору, не должен превышать 150 °С.

37. АППАРАТЫ ВОЗДУШНОГО ОХЛАЖДЕНИЯ. КЛАССИФИКАЦИЯ И ОБЛАСТЬ ПРИМЕНЕНИЯ. КОНСТРУКТИВНОЕ ИСПОЛНЕНИЕ АВО.

Широкое распространение в промышленности получили аппараты воздушного охлаждения (АВО), в которых в качестве охлаждающего агента используется поток атмосферного воздуха, нагнетаемый специально установленными вентиляторами.

Использование аппаратов этого типа позволяет осуществить значительную экономию охлаждающей воды, уменьшить количество сточных вод, исключает необходимость очистки наружной поверхности теплообменных труб. Такие аппараты используются в качестве конденсаторов и холодильников.

Сравнительно низкий коэффициент теплоотдачи со стороны потока воздуха, характерный для этих аппаратов, компенсируется значительным оребрением наружной поверхности труб, а также сравнительно высокими скоростями движения потока воздуха.

Аппараты воздушного охлаждения различного типа изготовляются по соответствующим стандартам, в которых предусмотрены большие диапазоны по величине поверхности, степени оребрения и виду конструкционного материала, используемого для их изготовления (сталь различных марок, латунь, алюминиевые сплавы, биметалл).

Аппараты воздушного охлаждения (АВО) подразделяются на следующие типы: горизонтальные АВГ, зигзагообразные АВЗ, малопоточные АВМ, для вязких продуктов АВГ-В, для высоковязких продуктов АВГ-ВВ.

На рис. 2.46 приведен аппарат горизонтального типа, в котором оребренные пучки теплообменных труб расположены горизонтально, а на рис. 2.46 — аппараты, где пучки труб расположены в виде шатра и зигзагообразно. Размещение пучков оребренных труб в виде шатра и зигзагообразное позволяет иметь большую поверхность теплообмена при той же занятой площади.

Для повышения эффективности аппарата в его конструкции предусмотрен коллектор впрыски очищенной воды 4, автоматически включающийся при повышенной температуре окружающей среды в летний период работы. При низких температурах (зимой) можно отключать электродвигатель и вентилятор; при этом конденсация и охлаждение происходят естественной конвекцией.

Кроме этого интенсивность теплосъема можно регулировать, меняя расход прокачиваемого воздуха изменением угла наклона лопастей вентилятора. Для этого в аппаратах воздушного охлаждения предусмотрены механизм дистанционного поворота лопастей с ручным или пневматическим приводом и жалюзи, установленные над теплообменными секциями. Жалюзийные заслонки можно поворачивать вручную или автоматически с помощью пневмопривода.

В зимнее время возможна опасность переохлаждения конденсируемого в аппарате продукта. Во избежание этого под теплообменными секциями можно устанавливать змеевиковый подогреватель воздуха, выполненный также из оребренных труб.

Теплообменная секция аппарата воздушного охлаждения состоит из четырех, шести или восьми рядов труб , размещенных по вершинам равносторонних треугольников в двух трубных решетках . Трубы закреплены развальцовкой или развальцовкой со сваркой. Секции могут быть одно- и многоходовыми. В многоходовых секциях воздушного охлаждения, где объем охлаждаемой среды уменьшается по мере его движения по трубам, последовательно по ходам уменьшается и число труб.

Для обеспечения жесткости трубного пучка секция укреплена металлическим каркасом . Однако при эксплуатации гайки на шпильках, соединяющих решетку с каркасом, должны быть отвинчены на расстояние, превышающее возможное температурное удлинение труб. В трубном пучке каждая труба может иметь индивидуальный прогиб. Для исключения контакта ребер верхнего ряда труб с ребрами труб нижнего ряда между соседними рядами в нескольких местах по длине трубы помещают дистанционные прокладки 5 шириной около 15 мм из алюминиевой ленты толщиной 2 мм.

 

Крышки  крепят к трубным решеткам т\о секций при высоком давлении неразъемно или на шпильках.

Если секцияаппарата многоходовая, крышки снабжают перегородками, которые делят трубный пучок на ходы. Съемные крышки обычно выполняют литыми из стали.

Как указано, трубы в аппаратах воздушного охлаждения имеют оребрение по наружной поверхности, поскольку коэффициент теплоотдачи на наружной поверхности труб примерно на порядок меньше коэффициента для внутренней поверхности.

В аппаратах воздушного охлаждения используют вентиляторы с диаметром колеса до 7 м. Колеса вентиляторов изготовляют сварными из алюминия или из стеклопласта, диффузор — из листовой стали толщиной 2 мм. Холодильники АВГ с трубами длиной 8 м комплектуют двумя одинаковыми вентиляторами и электродвигателями (по одному вентилятору и двигателю на каждые 4 м длины труб).

Электродвигатели привода могут быть одно- и двухскоростными. При использовании двухскоростных электродвигателей с понижением температуры окружающей среды можно работать при меньшей частоте вращения вентилятора.

38.ТИПЫ АППАРАТОВ ВОЗДУШНОГО ОХЛАЖДЕНИЯ. ТИПЫ ТЕПЛООБМЕННЫХ ТРУБОК. СПОСОБЫ РЕГУЛИРОВАНИЯ И ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА. Аппараты воздушного охлаждения (АВО) подразделяются на следующие типы: горизонтальные АВГ, зигзагообразные АВЗ, малопоточные АВМ, для вязких продуктов АВГ-В, для высоковязких продуктов АВГ-ВВ. Применение аппаратов воздушного охлаждения в виде конденсаторов или холодильников имеет ряд преимуществ: исключаются затраты на подготовку и перекачку воды, снижаются трудоемкость и стоимость ремонтных работ, не требуется специальной очистки наружной обтекаемой воздушным потоком поверхности труб, облегчается регулирование процесса охлаждения и др.

Рис. 3.9. Горизонтальный аппарат воздушного охлаждения:

1- сварная рама; 2- теплообменная секция; 3- диффузор; 4- водяная форсунка;

5- вентилятор; 6- коллектор; 7- электродвигатель; 8- рама; 9- угловой редуктор

В этихаппаратаххладагентом служитатмосферный воздух, подаваемый осевым вентилятором поперек пучка оребренных снаружи труб. Каждый пучок труб скомпонован в отдельную секцию 1 (рис. 3.10, а), располагаемую над вентилятором 2 горизонтально или наклонно (при зигзагообразном расположении секций).

Трубы имеют наружное оребрение различных исполнений: ‑монометаллические (алюминиевые) с накатанным винтовым ребром (см. верхнюю часть рис. 3.11); ‑биметаллические, состоящие из внутренней гладкой (стальной или латунной) и наружной (алюминиевой) с накатанным винтовым ребром (см. нижнюю часть рис. 3.11); ‑ стальные с привареиным ленточным ребром.

 

Рис. 3.10. Компоновка секций вАВГ:

а - одинарный трехсекционный аппарат; б- сдвоенный секционный аппарат; в - сдвоенный шестисекционный аппарат

Основной характеристикой трубы является коэффициент оребрения Кор = Fо/ Fн - отношение площадей наружных поверхностей аребренной и неоребренной труб. Наибольшее распространение получили трубы с коэффициентами оребрения 9 и 14,6. Их исполнение показано на рис. 3.11. Трубьi с коэффициентами оребрения 20 и 22 изготовляются по особому заказу. Аппараты типа АВГ компонуются из отдельных секций по схемам, показанным на рис. 3.10. Выбор варианта компоновки секций определяется необходимой площадью поверхности теплообмена и допускаемым со противлением трубного пространства.

рис. 3 .11. Вид оребрения труб:

1 - монометаллических;  2 - биметаллических

39.ПЛАСТИНЧАТЫЕ ТОА. УСТРОЙСТВО, ПРИНЦИП РАБОТЫ, ОСНОВНЫЕ ЭЛЕМЕНТЫ, ОБЛАСТЬ ПРИМЕНЕНИЯ. СРАВНЕНИЕ С КОЖУХОТРУБЧАТЫМИ АППАРАТАМИ.

Пластинчатые теплообменники представляют собой аппараты, теплообменная поверхность которых образована набором тонких штампованных пластин с гофрированной поверхностью. Их разделяют по степени доступности поверхности теплообмена для механической очистки и осмотра на разборные, полуразборные и неразборные (сварные).Наиболее широко применяют разборные пластинчатые теплообменники, в которых пластины отделены одна от другой прокладками. Монтаж и демонтаж этих аппаратов осуществляют достаточно быстро, очистка теплообменных поверхностей требует незначительных затрат труда.

Пластины полуразборных теплообменников попарно сварены, и доступ к поверхности теплообмена возможен только со стороны хода одной из рабочих сред. Пластины неразборных теплообменников сварены в блоки, соединенные на прокладках в общий пакет. Основные размеры и параметры наиболее распространенных в промышленности пластинчатых теплообменников определены ГОСТ 15518. Их изготовляют с поверхностью теплообмена от 2 до 600 м2 в зависимости от типоразмера пластин; эти теплообменники используют при давлении до 1,6 МПа и температуре рабочих сред от –30 до +180° С для теплообмена между жидкостями и парами (газами) в качестве холодильников, подогревателей и конденсаторов. Серийно выпускаемые разборные пластинчатые теплообменники могут работать с загрязненными рабочими средами при размере твердых включений не более 4 мм.

Разборные пластинчатые теплообменники изготовляют в пяти исполнениях, в том числе на консольной раме (исполнение 1), на двухопорной раме (исполнение 2), на трехопорной раме (исполнение 3).Разборный пластинчатый теплообменник на двухопорной раме (исполнение 2) показан на рисунке 2.54. Аппарат состоит из ряда теплообменных пластин 4, размещенных на верхней и нижней горизонтальных штангах 3. Концы штанг закреплены в неподвижной плите 2 и на стойке 7. Нажимной плитой 11 и винтом 8 пластины сжимаются, образуя теплообменную секцию.

Рис. 2.54. Разборный пластинчатый теплообменник (исполнение 2):

1, 9, 10 и 12 — штуцера; 2 — неподвижная плита; 3 — штанга; 4 — теплообменная пластина; 5 и 6 — прокладки; 7 — стойка; 8 — винт; 11 — нажимная плита; а, б, в и г — проходные отверстия

Теплообменные пластины имеют четыре проходных отверстия (а, б, в, г), которые образуют две изолированные одна от другой системы каналов. Для уплотнения пластин и каналов имеются резиновые прокладки. Прокладка 6 уложена в паз по контуру пластины и охватывает два отверстия на пластине, через которые происходят приток и вывод теплоносителя в канал между смежными пластинами, а прокладки 5 герметизируют два других отверстия на пластине. Для ввода теплоносителей в аппарат и их вывода предназначены штуцера 1, 9, 10, 12, расположенные на неподвижной и подвижной плитах. Показанный на рис. 2.55 теплообменник на трехопорной раме (исполнение 3) состоит из неподвижной плиты 3, в которой закреплены верхняя 2 и нижняя 1 горизонтальные штанги. На штангах размещены теплообменные пластины 4 и подвижные плиты 5. Для сжатия пакета пластин предназначены стяжки 6.

В изображенном на рис. 2.56 теплообменнике пластины скомпонованы в два симметричных пакета — каждый для одного из теплоносителей.

Рис. 2.56. Схема компоновки пластинчатого теплообменника в два симметричных пакета

Если расходы теплоносителей значительноразличаются, то для поддержания постоянного гидравлического сопротивления каналов применяют несимметричные схемы компоновки пластин; при этом число каналов и пакетов для каждого теплоносителя неодинаково. Примером может служить схема компоновки теплообменника, показаннаяна рис. 2.57. Для конденсации паров из смеси с неконденсирующимися газами используют схему компоновки (рис. 2.58а). Сконденсировавшаяся фаза IV выделяется из парогазовой смеси II в каналах вне первого пакета и выводится из аппарата, а несконденсировавшиеся газы I попадают в каналы а и б второго пакета, охлаждаются и выводятся из аппарата. Охлаждающая фаза III (вода) движется по каналам одного пакета. Такие конденсаторы парогазовых смесей работают с более высоким коэффициентом теплоотдачи, чем стандартные кожухотрубчатые аппараты.

При соответствующей компоновке можно получить многосекционный аппарат, в котором теплообмен между одним теплоносителем и двумя другими осуществляется в соответствующих зонах (рис. 2.58б).Теплообменные пластины различаются расположением в них отверстий для теплоносителей на пластины с диагональным (рис. 2.59а) и односторонним (рис. 2.59б) расположением отверстий. И те, и другие выполняют левыми и правыми. Благодаря чередованию в пакете левых и правых пластин образуются две изолированные системы каналов.

 

 

Рис. 2.57. Несимметричная схема компоновки пластин

 

Рис. 2.58. Схемы специальных пластинчатых аппаратов:

а — конденсатор; б — теплообменник для трех теплоносителей

Пластины с односторонним расположением отверстий взаимозаменяемы. При сборке правые пластины получают поворотом их относительно левых на 180°. Левые и правые пластины с диагональным расположением отличаются расположением прокладки и поэтому не являются взаимозаменяемыми. Кроме рассмотренных теплообменных пластин в аппаратах используют граничные пластины, устанавливаемые на концах пакетов. Серийно выпускаемые пластинчатые теплообменники комплектуют пластинами, штампованными из листового металла толщиной 1 мм. Гофры пластин обычно имеют в сечении профиль равностороннего треугольника высотой 4…7 мм и основанием длиной 14…30 мм (для вязких жидкостей до 75 мм). Гофры выполняют горизонтальными, «в елочку», под углом к горизонтали и др. Материал пластин — оцинкованная или коррозионно-стойкая сталь, титан, алюминий, мельхиор. В разборных теплообменниках пластины 2 (рис. 2.60) обычно крепят скобой 3 на верхней штанге 1. Нижняя штанга не несет нагрузки от массы пластин и служит лишь для фиксации их в заданном положении. Такое закрепление пластин позволяет легко извлечь их из пакета или вставить в него без снятия подвижной плиты и остальных пластин.

Рис. 2.59. Пластины с диагональным (а) и односторонним (б) расположением отверстий

Прокладки пластинчатых т\о изготовляют из резины формованием и укрепляют в пазу пластины на клею. Стойки и прижимные плиты пластинчатых теплообменников изготовляют из углеродистых сталей толщиной 8…12 мм. К недостаткам пластинчатых теплообменников следует отнести невозможность их использования при давлении более 1,6 МПа.

40.СПИРАЛЬНЫЕ ТЕПЛООБМЕННИКИ, КОНСТРУКЦИИ, ОСНОВНЫЕ УЗЛЫ, ПРИМЕНЕНИЕ. ПРЕИМУЩЕСТВА И НЕДОСТАТКИ.

Спиральные теплообменники получили в промышленности сравнительно широкое распространение, что объясняется рядом важныхпреимуществ их по сравнению с теплообменными аппаратами других типов.Спиральные теплообменники могут изготовляться из любого рулонного материала, подвергаемого холодной обработке и свариванию.Теплообменники компактны, их конструкция предусматривае возможность полного противотока. Площадь поперечного сечения каналов по всей длине остается неизменной, и поток не имеет резких изменений направлений, благодаря чему загрязнение поверхности спиральных теплообменников меньше, чем теплообменных аппаратов других типов, кроме того, ряд конструкций их позволяет проводить сравнительно легкую очистку в случае, не требующем для удаления осадка механического воздействия. Гидравлическое сопротивление спиральных теплообменников при одинаковой скорости движения жидкости меньше, чем у кожухотрубчатых. Спиральные теплообменники различных конструкций нашли применение для систем жидкость–жидкость, для систем жидкость–пар в качестве конденсаторов, нагревателей и испарителей, для охлаждения и нагревания паро-газовых смесей. Спиральные теплообменники специальной конструкции могут компоноваться с ректификационными колоннами и применяться в качестве дефлегматоров. Одно из назначений спиральных теплообменников — нагревание и охлаждение высоковязких жидкостей. Так как вязкая жидкость проходит по одному каналу, то устраняется проблема равномерного распределения вязкой жидкости по трубам.

Спиральные теплообменникимогут успешно применяться для шламов и жидкостей, содержащих волокнистые материалы. Применение специальных теплообменников для газов ограничено малым поперечным сечением канала.

Спиральные теплообменники применяются в гидролизной промышленности в качестве дефлегматоров, рекуператоров тепла в отбелочных отделениях, конденсаторов терпентиновых паров и поверхностных конденсаторов в выпарных отделениях; в химической промышленности – в качестве теплообменников при производстве серной, азотной и фосфорной кислот, в качестве конденсаторов для различных органических соединений; в коксогазовой промышленности – для охлаждения аммиачной воды, бензола и поглотительного масла, в алюминиевой промышленности — в качестве теплообменников для алюминатных растворов; в сахарной и пищевой промышленности — для нагрева и охлаждения раствора сахара и фруктовых соков.

Спиральный теплообменник представляет собой два спиральных канала, навитых из рулонного материала вокруг центральной разделительной перегородки — керна. По видам уплотнения торцов каналы делятся на три основных типа

— тупиковые каналы, каждый из которых заваривается с противоположной стороны при помощи вставленной ленты. Такой способ уплотнения исключает возможность смешения теплоносителей при прорыве прокладки. После снятия крышек оба канала легко подвергаются чистке. Этот способ уплотнения каналов наиболее распространен;

— глухие каналы, в которых канал заваривается на торцах с обеих сторон.Недостаток этого типа уплотнения заключается в невозможности чистки каналов;

— сквозные каналы, открытые с торцов. Уплотнение достигается при помощи манжет U-образного сечения или листового прокладочного материала.

Преимущества спиральных теплообменников:

-компактность;

-возможность пропускания обоих теплоносителей с высокими скоростями, что обеспечивает большой коэффициент теплопередачи;

-малое гидравлическое сопротивление по сравнению с другими типами поверхностных теплообменников.

Недостатками спиральных теплообменников являются:

- сложность изготовления и ремонта;

- пригодность для работы под избыточным давлением не более 0,6 МПа.


Дата добавления: 2019-11-25; просмотров: 913; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!