Превращение микроорганизмами фосфора, железа и серы



Фосфор входит в состав белков и липоидов. Особенно много его в ядрах клеток, головном мозге человека и животных. Микроорганизмы, участвующие в превращении фосфора, живут в почве, воде. Их роль сводится к двум процессам: минерализации фосфора, входящего в состав органических веществ, и превращению фосфорнокислых солей из слаборастворимых в хорошо растворимые. Минерализацию фосфора вызывают гнилостные бактерии, в частности В. megatherium. Образующаяся при этом фосфорная кислота связывается со щелочами почвы и превращается в слаборастворимые соли кальция, железа, магния и, следовательно, малодоступные для растений. В дальнейшем под действием почвенных кислотообразующих бактерий, особенно нитрифицирующих, эти соли превращаются в растворимые соединения фосфорной кислоты, доступные для растений.

Железо входит в состав белка гемоглобина, содержащегося в эритроцитах. Этим объясняется его важная роль в процессе дыхания человека и животных.

Основные представители железобактерий – нитчатые бактерии родов Crenotrix, Chlamydothrix, Cladothrix. Эти бактерии представляют длинные нити, покрытые общим слизистым влагалищем, в котором отлагается гидрат окиси железа. После отмирания бактерий образуется болотная и озерная железная руда, залегающая островами в десятки и сотни квадратных метров. Железобактериям принадлежит важная роль в образовании железомарганцевых отложений в природе.

В состав белка растительного и животного происхождения входит и сера, этим объясняется важность этого элемента в круговороте веществ.

Бактерии, усваивающие соединения серы, называют серобактериями. Обитают они в почве, воде, навозе. При разложении в почве органических серосодержащих веществ, а также при восстановлении солей серной, сернистой и серноватистой кислот образуется сероводород, ядовитый для растений и животных. Этот газ превращается в безвредные, доступные для растений соединения серобактериями.

Глава 7. ОСНОВЫ БИОТЕХНОЛОГИИ[††††]

7.

Понятие о биотехнологии, цели и задачи

Биотехнология представляет собой область знаний, которая воз­никла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для медицины и ветеринарии, а также в принципиально новых технологиях. Биотехнология (от греч. bios – жизнь, teken – искусство, мастерство, logos – наука, умение, мастерство) – это получение продуктов из биологических объектов или с применением биологических объектов. В качестве биологических объектов могут быть использованы организмы животных и человека (например, получение им­муноглобулинов из сывороток вакцинированных лошадей или людей; получение препаратов крови доноров), отдельные органы (получение гормона инсулина из поджелудочных желез крупного рогатого скота и свиней) или культуры тканей (получение лекарственных препаратов). Однако в качестве биологических объектов чаще всего используют одноклеточные микроорганиз­мы, а также животные и растительные клетки. Выбор этих объектов обусловлен следующими причинами:

· клетки являются своего рода «биофабриками», вырабатывающими в процессе жизнедеятельности разнообразные ценные продукты (белки, жиры, углеводы, витамины, аминокислоты, антибиотики, гормоны, антитела, антигены, ферменты, спирты и пр.). Эти продукты, крайне необходимые в жизни человека, пока недоступны для получения «небиотехнологическими» способами из-за сложности технологии процессов или экономической нецелесообразности, особенно в условиях крупномасштабного производства;

· клетки очень быстро воспроизводятся, что позволяет за относительно короткое время искусственно нарастить на сравнительно дешевых и недефицитных питательных средах в промышленных масштабах огромные количества биомассы микробных, животных или растительных клеток;

· биосинтез сложных веществ (белков, антибиотиков, антигенов, антител и др.) значительно экономичнее и техноло­гически доступнее, чем химический синтез. Коэффициент полезного действия «работы» клетки равен 70 %, а самого совершенного технологического процесса – значительно ниже;

· возможность проведения биотехнологического процесса в про­мышленных масштабах, т. е. наличие соответствующего техно­логического оборудования и аппаратуры, доступность сырья, технологии переработки и др.

Клетки животных и растений, микробные клетки в процессе жизнедеятельности (ассимиляции и диссимиляции) образуют но­вые продукты и выделяют метаболиты, обладающие разнообраз­ными физико-химическими свойствами и биологическим дей­ствием. Обычно продукты жизнедеятельности одноклеточных делят на 4 категории: сами клетки как источник целевого продукта. Например, выращенные бактерии или вирусы используют для получения живой или убитой корпускулярной вакцины; дрожжи – как кормовой белок или основу для получения гидролизатов питательных сред и т. д.; крупные молекулы (макромолекулы), которые синтезируются клетками в процессе выращивания: ферменты, токсины, ан­тигены, антитела, пептидогликаны и др.; первичные метаболиты – низкомолекулярные вещества, не­обходимые для роста клеток (аминокислоты, витамины, нуклеотиды, органические кислоты); вторичные метаболиты (идиолиты) – низкомолекулярные соединения, не требующиеся для роста клеток (антибиоти­ки, алкалоиды, токсины, гормоны).

Биотехнология использует эту продукцию клеток как сырье, которое в результате технологической обработки превращается конечный продукт. С помощью биотехнологии получают множество продуктов, используемых в различных отраслях: медицине (антибиотики, витамины, ферменты, аминокисло­ты, гормоны, вакцины, антитела, компоненты крови, диаг­ностические препараты, иммуномодуляторы, алкалоиды, пи­щевые белки, нуклеиновые кислоты, нуклеозиды, нуклеотиды, липиды, антиметаболиты, антиоксиданты, противоглис­тные и противоопухолевые препараты); ветеринарии и сельском хозяйстве (кормовой белок: кормо­вые антибиотики, витамины, гормоны, вакцины, биологичес­кие средства защиты растений, инсектициды); пищевой промышленности (аминокислоты, органические кис­лоты, пищевые белки, ферменты, липиды, сахара, спирты, дрожжи); химической промышленности (ацетон, этилен, бутанол); энергетике (биогаз, этанол).

Следовательно, биотехнология направлена на создание диагностических, профилактических и лечебных медицинских и ветеринарных препаратов, на решение продовольственных вопросов (повышение урожайности, продуктивности животноводства, улучшение качества пищевых продуктов – молочных, кондитерских, хлебобулочных, мясных, рыбных); на обеспечение многих технологических процессов в легкой, химической и других отраслях промышленности. Необходимо отметить также все возрастающую роль биотехнологии в экологии, так как очистка очных вод, переработка отходов и побочных продуктов, их градация (фенол, нефтепродукты и другие вредные для окружающей среды вещества) осуществляются с помощью микро-организмов.

В настоящее время в биотехнологии выделяют медико-фармацевтическое, продовольственное, сельскохозяйственное и экологическое направления. В соответствии с этим биотехнологию можно разделить на медицинскую, сельскохозяйственную, промышленную и экологическую. Медицинская в свою очередь подразделяется на фармацевтическую и иммунобиологическую, сельскохозяйственная – на ветеринарную и биотехнологию растений, а промышленная – на соответствующие отраслевые направления (пищевая, легкая промышленность, энергетика и т. д.).

Биотехнологию также подразделяют на традиционную (старую) и новую. Последнюю связывают с генетической инженерией. Общепризнанное определение предмета «биотехнология» отсутствует и даже ведется дискуссия о том, наука это или производство.

Видимо, правильно будет определить биотехнологию как сферу деятельности, которая на основе изучения процессов жизнедеятель­ности живых организмов, главным образом клеток микроорганиз­мов, животных и растительных клеток, использует эти процессы и сами объекты для промышленного производства продуктов, не­обходимых в жизни человека, а также получения биоэффектов, ранее не встречавшихся в природе (например, получение рекомбинантных бактерий, трансгенных растений и животных).

В биотехнологии, как в никакой другой области знаний, тес­но увязываются, интегрируются наука и производство.

Промышленное производство в биотехнологии по сути осно­вано на нескольких принципах: брожении (ферментация), био­конверсии (превращение одного вещества в другое), культиви­ровании растительных и животных клеток, бактерий и вирусов, генетических манипуляциях. Реализация этих научных принци­пов в производстве потребовала разработки промышленного обо­рудования и аппаратуры, отработки и оптимизации технологи­ческих процессов, разработки способов оценки и контроля про­дукции на всех ее стадиях.

Современная биотехнологическая промышленность располагает крупными заводами, опытно-конструкторскими учреждениями, научно-исследовательскими институтами. Фундаментальными про­блемами биотехнологии заняты научно-исследовательские инсти­туты РАН, РАМН и ряд прикладных отраслевых институтов.

На заводах микробиологической (биотехнологической) про­мышленности ежегодно производятся миллионы тонн кормово­го белка, десятки тысяч тонн ферментов, антибиотиков, сотни диагностических и профилактических вакцинных и иммунных препаратов, набор практически всех аминокислот, витаминов, гормонов, спиртов, органических кислот и много другой про­дукции. Однако потребности быстро растущего народного хозяй­ства биотехнология удовлетворяет еще далеко не в полной мере. Поэтому развитию биотехнологии в настоящее время уделяется постоянное внимание, и эта отрасль быстро развивается.


Дата добавления: 2019-09-13; просмотров: 351; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!