Основы алгебры логики. Логические выражения. Их преобразования.



Поскольку в цифровых устройствах используются только два символа 0 и 1, алгебра логики использует логические переменные и функции от них, которые также принимают только два значения - 0 и 1. В логике символы 0 и 1 не цифры. Единица обозначает абсолютную истину, символ 0 - абсолютную ложь. Основы алгебры логики придумал в середине XIX века ирландский математик Дж. Буль, поэтому алгебра логики иногда называется булева алгебра.

Логическое высказывание - Это утверждение, которому всегда можно поставить в соответствие одно из двух логических значений: ложь (0, ложно, false) или истина (1, истинно, true). Логическое высказывание принято обозначать заглавными латинскими буквами.

Основные операции над логическими высказываниями

Отрицание логического высказывания — логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно.( посылка следствие)

Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны. (≡ или ↔.)

Кванторное логическое высказывание с квантором всеобщности ( ) — логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное логическое высказывание с квантором существования ( ) — логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

Этапы развития вычислительной техники. Поколения ЭВМ. Многопроцессорные вычислительные системы. Супер-ЭВМ.

Первым прообразом современных компьютеров была механическая аналитическая машина Чарльза Бэббиджа, которую он проектировал и создавал в середине XIX в. Аналитическая машина должна была обрабатывать числовую информацию по заранее составленной программе без вмешательства человека.

Основными этапами развития вычислительной техники являются:
I. Ручной — с 50-го тысячелетия до н. э.; Ручной период автоматизации вычислений начался на заре человеческой цивилизации. Он базировался на использовании пальцев рук и ног. Счет с помощью группировки и перекладывания предметов явился предшественником счета на абаке — наиболее развитом счетном приборе древности. Аналогом абака на Руси являются дошедшие до наших дней счеты. Использование абака предполагает выполнение вычислений по разрядам, т.е. наличие некоторой позиционной системы счисления.
В начале XVII века шотландский математик Дж. Непер ввел логарифмы, что оказало революционное влияние на счет. Изобретенная им логарифмическая линейка успешно использовалась еще пятнадцать лет назад, более 360 лет прослужив инженерам. Она, несомненно, является венцом вычислительных инструментов ручного периода автоматизации.
II. Механический — с середины XVII века; Английский математик Чарльз Бэббидж (Charles Babbage, 1792—1871) выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати. Первая спроектированная Бэббиджем машина, разностная машина, работала на паровом двигателе. Она заполняла таблицы логарифмов методом постоянной дифференциации и заносила результаты на металлическую пластину. Работающая модель, которую он создал в 1822 году, была шестиразрядным калькулятором, способным производить вычисления и печатать цифровые таблицы. Второй проект Бэббиджа — аналитическая машина, использующая принцип программного управления и предназначавшаяся для вычисления любого алгоритма. Проект не был реализован, но получил широкую известность и высокую оценку ученых.
Аналитическая машина состояла из следующих четырех основных частей: блок хранения исходных, промежуточных и результирующих данных (склад — память); блок обработки данных (мельница — арифметическое устройство); блок управления последовательностью вычислений (устройство управления); блок ввода исходных данных и печати результатов (устройства ввода/вывода).
III. Электромеханический — с девяностых годов XIX века; Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет — от первого табулятора Г.Холлерита до первой ЭВМ “ENIAC”.
IV. Электронный — с сороковых годов XX века. начало которого связывают с созданием в США в конце 1945 г. электронной вычислительной машины ENIAC.

Первое поколение ЭВМ

ЭВМ первого поколения обладали небольшим быстродействием в несколько десятков тыс. оп./сек. В качестве внутренней памяти применялись ферритовые сердечники.

Существенным функциональным ограничением ЭВМ первого поколения являлась ориентация на выполнение арифметических операций. При попытках приспособления для задач анализа они оказывались неэффективными. Программы выполнялись позадачно, т.е. оператору надо было следить за ходом решения задачи и при достижении конца самому инициировать выполнение следующей задачи.

Начало современной эры использования ЭВМ в нашей стране относят к 1950 году, когда в институте электротехники АН УССР под руководством С.А. Лебедева была создана первая отечественная ЭВМ под названием МЭСМ – Малая Электронная Счетная Машина. В течение первого этапа развития средств вычислительной техники в нашей стране создан ряд ЭВМ: БЭСМ, Стрела, Урал, М-2.

Второе поколение ЭВМ

Второе поколение ЭВМ – это переход к транзисторной элементной базе, появление первых мини-ЭВМ. Совершенствование и удешевление ЭВМ привели к снижению удельной стоимости машинного времени и вычислительных ресурсов в общей стоимости автоматизированного решения задачи обработки данных, в то же время расходы на разработку программ (т.е. программирование) почти не снижались, а в ряде случаев имели тенденции к росту. Таким образом, намечалась тенденция к эффективному программированию, которая начала реализовываться во втором поколении ЭВМ и получает развитие до настоящего времени. К отечественным ЭВМ второго поколения относятся Проминь, Минск, Раздан, Мир.

Третье поколение ЭВМ

В 70-х годах возникают и развиваются ЭВМ третьего поколения. В нашей стране это ЕС ЭВМ, АСВТ, СМ ЭВМ. Данный этап - переход к интегральной элементной базе и создание многомашинных систем, поскольку значительного увеличения быстродействия на базе одной ЭВМ достичь уже не удавалось. Поэтому ЭВМ этого поколения создавались на основе принципа унификации, что позволило комплексировать произвольные вычислительные комплексы в различных сферах деятельности.

Четвертое поколение ЭВМ

С 1980 года начался современный четвертый этап, для которого характерны переход к большим интегральным схемам, создание серий недорогих микро-ЭВМ, разработка суперЭВМ для высокопроизводительных вычислений.

Наиболее значительным стало появление персональных ЭВМ, что позволило приблизить ЭВМ к своему конечному пользователю.

5 поколение ЭВМ 1990—…

Переход к компьютерам пятого поколения предполагал переход к новым архитектурам, ориентированным на создание искусственного интеллекта.

 

Считалось, что архитектура компьютеров пятого поколения будет содержать два основных блока. Один из них — собственно компьютер, в котором связь с пользователем осуществляет блок, называемый «интеллектуальным интерфейсом». Задача интерфейса — понять текст, написанный на естественном языке или речь, и изложенное таким образом условие задачи перевести в работающую программу.

Основные требования к компьютерам 5-го поколения: Создание развитого человеко-машинного интерфейса (распознавание речи, образов); Развитие логического программирования для создания баз знаний и систем искусственного интеллекта; Создание новых технологий в производстве вычислительной техники; Создание новых архитектур компьютеров и вычислительных комплексов.

Вычислительная система называется многопроцессорной, если она содержит несколько процессоров, работающих с общей ОП (общее поле оперативной памяти) и управляется одной общей операционной системой. Часто в МПС организуется общее поле внешней памяти. Многопроцессорные системы представляют собой основной путь построения ВС сверхвысокой производительности. При создании таких ВС возникает много сложных проблем, к которым в первую очередь следует отнести распараллеливание вычислительного процесса (программ) для эффективной загрузки процессоров системы, преодоление конфликтов при попытках нескольких процессоров использовать один и тот же ресурс системы (например, некоторый модуль памяти) и уменьшение влияния конфликтов на производительность системы, осуществление быстродействующих экономичных по аппаратурным затратам межмодульных связей. Указанные вопросы необходимо учитывать при выборе структуры МПС.

Cray-1 принято считать одним из первых супер-ЭВМ. Он появился в 1974 году. В самом начале появления супер-ЭВМ было связано с потребностью быстрой обработки больших массивов данных и сложных математически - аналитических вычислениях. Поэтому первые суперкомпьютеры по своей архитектуре мало отличались от обычных ЭВМ. Только их мощность была во много раз больше стандартных рабочих станций.


Дата добавления: 2019-09-02; просмотров: 201; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!