Перевод из двоичной и шестнадцатеричной систем счисления в десятичную.



В этом случае рассчитывается полное значение числа по известной формуле.

 

Пример 4. Выполнить перевод числа 1316 в десятичную систему счисления. Имеем:

1316 = 1*161 + 3*160 = 16 + 3 = 19.

Таким образом, 1316 = 19.

 

Пример 5. Выполнить перевод числа 100112 в десятичную систему счисления. Имеем:

100112 = 1*24 + 0*23 + 0*22 + 1*21 + 1*20 = 16+0+0+2+1 = 19.

Таким образом, 100112 = 19.

 

Перевод из двоичной системы счисления в шестнадцатеричную:

а) исходное число разбивается на тетрады (т.е. 4 цифры), начиная с младших разрядов. Если количество цифр исходного двоичного числа не кратно 4, оно дополняется слева незначащими нулями до достижения кратности 4;

б) каждая тетрада заменятся соответствующей шестнадцатеричной цифрой в соответствии с таблицей.

 

Пример 6. Выполнить перевод числа 100112 в шестнадцатеричную систему счисления.

Поскольку в исходном двоичном числе количество цифр не кратно 4, дополняем его слева незначащими нулями до достижения кратности 4 числа цифр. Имеем:

 

 

В соответствии с таблицей 00112 = 112 = 316 и 00012 = 12 = 116.

Тогда 100112 = 1316.

 

Перевод из шестнадцатеричной системы счисления в двоичную:

а) каждая цифра исходного числа заменяется тетрадой двоичных цифр в соответствии с таблицей. Если в таблице двоичное число имеет менее 4 цифр, оно дополняется слева незначащими нулями до тетрады;

б) незначащие нули в результирующем числе отбрасываются.

 

Пример 7. Выполнить перевод числа 1316 в двоичную систему счисления.

По таблице имеем:

116 = 12 и после дополнения незначащими нулями двоичного числа 12 = 00012;

316 = 112 и после дополнения незначащими нулями двоичного числа 112 = 00112.

Тогда 1316 = 000100112. После удаления незначащих нулей имеем 1316 = 100112.

Правила перевода правильных дробей

 

Напомним, что правильная дробь имеет нулевую целую часть, т.е. у нее числитель меньше знаменателя.

Результат перевода правильной дроби всегда правильная дробь.

 

Перевод из десятичной системы счисления в двоичную и шестнадцатеричную:

а) исходная дробь умножается на основание системы счисления, в которую переводится (2 или 16);

б) в полученном произведении целая часть преобразуется в соответствии с таблицей в цифру нужной системы счисления и отбрасывается – она является старшей цифрой получаемой дроби;

в) оставшаяся дробная часть (это правильная дробь) вновь умножается на нужное основание системы счисления с последующей обработкой полученного произведения в соответствии с шагами а) и б);

г) процедура умножения продолжается до тех пор, пока ни будет получен нулевой результат в дробной части произведения или ни будет достигнуто требуемое количество цифр в результате;

д) формируется искомое число: последовательно отброшенные в шаге б) цифры составляют дробную часть результата, причем в порядке уменьшения старшинства.

 

Пример 1. Выполнить перевод числа 0,847 в двоичную систему счисления. Перевод выполнить до четырех значащих цифр после запятой.

Имеем:

 

Таким образом, 0,847 = 0,11012.

 

В данном примере процедура перевода прервана на четвертом шаге, поскольку получено требуемое число разрядов результата. Очевидно, это привело к потере ряда цифр.

 

Пример 2. Выполнить перевод числа 0,847 в шестнадцатеричную систему счисления. Перевод выполнить до трех значащих цифр.

Имеем:

 

В данном примере также процедура перевода прервана.

Таким образом, 0,847 = 0,D8D16.

 

Перевод из двоичной и шестнадцатеричной систем счисления в десятичную.

В этом случае рассчитывается полное значение числа по формуле, причем коэффициенты a iпринимают десятичное значение в соответствии с таблицей.

 

Пример 3. Выполнить перевод из двоичной системы счисления в десятичную числа 0,11012.

Имеем:

0,11012 = 1*2-1 + 1*2-2 + 0*2-3 +1*2-4 = 0,5 + 0,25 + 0 + 0,0625 = 0,8125.

Расхождение полученного результата с исходным числом (см. пример 1) вызвано тем, что процедура перевода в двоичную дробь была прервана.

Таким образом, 0,11012 = 0,8125.

 

Пример 4. Выполнить перевод из шестнадцатеричной системы счисления в десятичную числа 0,D8D16.

Имеем:

0,D8D16 = 13*16-1 + 8*16-2 + 13*16-3 = 13*0,0625 + 8*0,003906 + 13* 0,000244 = 0,84692.

Расхождение полученного результата с исходным числом (см. пример 2) вызвано тем, что процедура перевода в шестнадцатеричную дробь была прервана.

Таким образом, 0,D8D16 = 0,84692.

 

Перевод из двоичной системы счисления в шестнадцатеричную:

а) исходная дробь делится на тетрады, начиная с позиции десятичной точки вправо. Если количество цифр дробной части исходного двоичного числа не кратно 4, оно дополняется справа незначащими нулями до достижения кратности 4;

б) каждая тетрада заменяется шестнадцатеричной цифрой в соответствии с таблицей.

 

Пример 5. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,11012.

Имеем:

 

В соответствии с таблицей 11012 = D16. Тогда 0,11012 = 0,D16.

 

Пример 6. Выполнить перевод из двоичной системы счисления в шестнадцатеричную числа 0,00101012.

Поскольку количество цифр дробной части не кратно 4, добавим справа незначащий ноль:

 

 

В соответствии с таблицей 00102 = 102 = 216 и 10102 = A16.

Тогда 0,00101012 = 0,2A16.

 

Перевод из шестнадцатеричной системы счисления в двоичную:

а) каждая цифра исходной дроби заменяется тетрадой двоичных цифр в соответствии с таблицей;

б) незначащие нули отбрасываются.

 

Пример 7. Выполнить перевод из шестнадцатеричной системы счисления в двоичную числа 0,2А16.

По таблице имеем 216 = 00102 и А16 = 10102.

Тогда 0,2А16 = 0,001010102.

Отбросим в результате незначащий ноль и получим окончательный ответ: 0,2А16 = 0,00101012


Дата добавления: 2019-09-02; просмотров: 161; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!