Глупый не любит знания, а только бы выказать свой ум.



Притчи 18:2

 

В некотором смысле наша история могла бы на этом и закончиться, поскольку мы достигли границ наших прямых эмпирических знаний о Вселенной на ее фундаментальных масштабах. Но никто не говорит, что мы должны останавливать свое воображение, даже если его образы не всегда приятны. До июля 2012 г. специалистов по физике элементарных частиц мучили два кошмара. Первый заключался в том, что БАК ничего не найдет, совсем ничего. Ведь если бы так случилось, это наверняка был бы последний крупный ускоритель, построенный человечеством для исследования фундаментального устройства мироздания. Второй состоял в том, что БАК откроет бозон Хиггса… и точка.

Каждый раз, когда нам удается приподнять очередной слой реальности, нас манят другие, более глубокие ее слои. Поэтому каждое существенное новое продвижение в науке, как правило, приносит нам больше вопросов, чем ответов. Но оно также обычно приносит нам хотя бы контуры дальнейшего пути, направление движения, в котором можно начать поиски ответов на эти вопросы. Открытие бозона Хиггса, а с ним и подтверждение существования заполняющего пространство невидимого хиггсовского поля стало сильнейшим подтверждением смелых научных разработок XX столетия.

Однако и сегодня актуальны слова Шелдона Глэшоу: бозон Хиггса напоминает туалет. Он скрывает все некрасивые подробности, о которых мы предпочитаем не говорить. Хиггсовское поле, каким бы элегантным оно ни выглядело в теории, в рамках Стандартной модели, по существу, является ситуативным дополнением. Оно добавлено в теорию, чтобы обеспечить возможности, необходимые для точного моделирования мира нашего опыта. Но само по себе оно не нужно теории. Вселенная могла бы счастливо существовать с дальнодействующим слабым взаимодействием и безмассовыми частицами. Правда, там просто не было бы нас и задавать вопросы тоже было бы некому. Более того, точные физические свойства бозона Хиггса, как мы увидели, не определяются в рамках одной только Стандартной модели. Этот бозон мог оказаться в тридцать раз тяжелее или в сто раз легче.

Почему же тогда частица Хиггса вообще существует? И почему обладает именно такой массой, какой обладает? (Отметим, в который уже раз: когда ученые спрашивают «почему», они на самом деле имеют в виду «каким образом».) Если бы бозона Хиггса не существовало, мира, который мы видим вокруг, не существовало бы тоже, но это, конечно, не объяснение. Или все же объяснение? В конечном итоге понять физику, стоящую за бозоном Хиггса, означает понять, как мы с вами возникли. Вопросу «почему мы существуем?» на фундаментальном уровне вполне соответствует вопрос «почему существует бозон Хиггса?». А Стандартная модель не дает него ответа.

Однако кое‑какие намеки все же имеются и исходят из сочетания теории и эксперимента. Вскоре после того, как в 1974 г. была надежно определена фундаментальная структура Стандартной модели, и задолго до того, как ее детали были экспериментально подтверждены на протяжении следующего десятилетия, две группы физиков в Гарварде, где тогда работали и Глэшоу, и Вайнберг, заметили кое‑что интересное. Глэшоу, совместно с Говардом Джорджи, занимался тем, что у него получалось лучше всего: отыскивал закономерности среди существующих частиц и сил и искал новые возможности при помощи математической теории групп.

Напомню, что в Стандартной модели слабое и электромагнитное взаимодействия объединены при высоких энергиях, но, когда эта симметрия спонтанно нарушается конденсатом хиггсовского поля, то есть при наблюдаемых энергиях, остаются две отдельные и различные силы, причем слабое взаимодействие становится близкодействующим, а электромагнетизм остается дальнодействующим. Джорджи и Глэшоу попытались расширить эту идею на сильное взаимодействие и обнаружили, что все известные частицы и все три негравитационных взаимодействия в принципе естественным образом укладываются в единую фундаментальную структуру более крупной калибровочной симметрии. Они тогда рассуждали о том, что эта фундаментальная симметрия могла бы спонтанно нарушаться на каких‑то сверхвысоких энергиях и малых расстояниях, выходящих далеко за рамки текущих экспериментов, оставляя после себя две отдельные и различные ненарушенные калибровочные симметрии, порождающие сильное и электрослабое взаимодействия. Затем, на более низких энергиях и бóльших расстояниях, нарушалась бы электрослабая симметрия, разделяя единое прежде взаимодействие на два – близкодействующее слабое и дальнодействующее электромагнитное.

Они скромно назвали свою теорию теорией Великого объединения (ТВО).

Примерно в то же время Вайнберг вместе с Джорджи и Хелен Куинн, в продолжение работ Вильчека, Гросса и Политцера, обратили внимание на нечто интересное. Если сильное взаимодействие ослабевало на малых расстояниях, то электромагнитное и слабое взаимодействия, напротив, становились сильнее.

Не нужно было быть гением, чтобы заинтересоваться тем, не сравняются ли по силе все эти три взаимодействия на каком‑то достаточно малом масштабе. Проведя расчеты, они обнаружили (с той точностью, с какой в то время измерялись эти взаимодействия), что такое объединение возможно, но только на масштабах расстояний, примерно на пятнадцать порядков меньше размеров протона.

Это было хорошей новостью при условии, что в качестве объединенной теории будет выступать теория, предложенная Джорджи и Глэшоу, поскольку если все частицы, которые мы наблюдаем в природе, будут объединены в эту новую большую калибровочную группу, то должны существовать новые калибровочные бозоны, обеспечивающие переходы между кварками (из которых состоят протоны и нейтроны), электронами и нейтрино. Это означало бы, что протоны могут распадаться на другие, более легкие частицы. Как сказал Глэшоу, «бриллианты не навсегда».

Тогда уже было известно, что протоны характеризуются невероятно долгим временем жизни. Не только потому, что мы всё еще существуем спустя почти 14 миллиардов лет после Большого взрыва, но и потому, что все мы не умираем от рака еще в детстве. Если бы протоны распадались со средним временем жизни меньшим, чем, скажем, миллиард миллиардов лет, то за период детства в нашем теле распадалось бы достаточно протонов, чтобы нас убило излучение от их распадов. Не забывайте, что в квантовой механике все процессы носят вероятностный характер. Если средний протон живет миллиард миллиардов лет, то там, где имеется миллиард миллиардов протонов, будет распадаться в среднем по одному протону в год. А в наших телах протонов гораздо больше, чем миллиард миллиардов.

Однако при тех невероятно малых расстояниях и, следовательно, невероятно больших энергиях, которые предположительно соответствуют спонтанному нарушению симметрии в Великом объединении, новые калибровочные бозоны должны обладать большой массой. Это сделало бы переносимые ими взаимодействия настолько близкодействующими, что на масштабах протонов и нейтронов они были бы уже невероятно слабыми. В результате протоны в этом сценарии, хотя и могут в принципе распадаться, живут, возможно, миллион миллиардов миллиардов миллиардов лет. Никаких проблем.

 

* * *

 

С учетом результатов Глэшоу и Джорджи, а также Джорджи, Куинн и Вайнберга аромат Великого объединения буквально носился в воздухе. После успеха теории электрослабого взаимодействия физики были настроены решительно и готовы к дальнейшему объединению теорий.

Однако как можно было бы убедиться в том, что эти красивые идеи верны? Невозможно построить ускоритель для работы с энергиями, в миллион миллиардов раз превышающими энергию массы покоя протона. Такая установка была бы окружностью с лунную орбиту. Даже если бы это было возможно, то, учитывая недавние скандалы вокруг SSC, ни одно правительство не согласилось бы финансировать такой проект.

К счастью, был и другой способ, опиравшийся на вероятностные аргументы вроде того, который я только что привел для оценки нижнего предела времени жизни протона. Допустим, новая теория Великого объединения предскажет время жизни протона, равное, скажем, тысяче миллиардов миллиардов миллиардов лет, тогда можно поместить тысячу миллиардов миллиардов миллиардов протонов в один детектор и в среднем каждый год один из них будет распадаться.

Где можно найти столько протонов? Очень просто: примерно в трех тысячах тонн воды.

Так что требовалось всего лишь взять резервуар, скажем с тремя тысячами тонн воды, поместить его в темноту, обеспечив полное отсутствие радиоактивного фона, окружить чувствительными фотоумножителями, способными регистрировать световые вспышки в детекторе, и подождать год, чтобы увидеть вспышку света при распаде протона. Какой бы пугающей ни казалась эта задача, по крайней мере два крупных эксперимента были одобрены и осуществлены именно для этого: один глубоко под землей возле озера Эри в соляной шахте, другой тоже в шахте вблизи японского города Камиока. Шахты были необходимы, чтобы экранировать воду от приходящих космических лучей; в противном случае эти лучи дали бы фон, на котором потерялись бы любые сигналы от протонных распадов.

Оба эксперимента были запущены около 1982–1983 гг. Великое объединение казалось столь убедительным, что физическое сообщество уверенно ожидало вскоре получить сигнал; Великое объединение достойно увенчало бы собой десятилетие поразительных перемен и открытий в физике элементарных частиц, не говоря уже о Нобелевке для Глэшоу и, возможно, еще для кого‑нибудь.

К сожалению, на этот раз природа не была к нам столь добра. Никаких сигналов не было получено ни за первый год, ни за второй, ни за третий. От простейшей элегантной модели, предложенной Глэшоу и Джорджи, скоро пришлось отказаться. Но, однажды заразившись идеей Великого объединения, от нее нелегко избавиться. Выдвигались всё новые предположения, новые теории, в которых распад протона мог подавляться до такой степени, чтобы стать незаметным в проводимых экспериментах.

23 февраля 1987 г., однако, произошло новое событие, подтвердившее максиму, которую я считаю почти универсальной: всякий раз, когда мы открываем новое окно во Вселенную, нас ждет сюрприз. В тот день группа астрономов заметила на фотопластинках, отснятых за ночь, взорвавшуюся сверхновую звезду – самую близкую к нам за почти четыреста лет. Звезда эта находится от нас на расстоянии около 160 000 световых лет в Большом Магеллановом Облаке – карликовой галактике, спутнике Млечного Пути, которую можно увидеть в Южном полушарии.

Если наши представления о взрывающихся звездах верны, то большая часть энергии там должна была высвобождаться в виде нейтрино, хотя и видимый свет от взрыва настолько силен, что сверхновые при взрыве (примерно раз в сто лет в одной галактике) становятся ярчайшими небесными объектами. Грубые прикидки тогда показывали, что громадные водяные детекторы IMB (Ирвин – Мичиган – Брукхейвен) и «Камиоканде» должны увидеть примерно по двадцать нейтринных событий. Когда экспериментаторы IMB и «Камиоканде» заново пересмотрели свои данные за тот день, обнаружилось – гляди‑ка! – что IMB зарегистрировал восемь событий, которые можно было считать подходящими кандидатами, в пределах десятисекундного интервала, а «Камиоканде» – одиннадцать. В мире нейтринной физики это можно было считать настоящим водопадом данных. Нейтринная астрофизика внезапно достигла зрелости. Эти девятнадцать событий породили, наверное, не менее девятнадцати сотен статей таких физиков, как я, которые поняли, что им открылось беспрецедентное окно в ядро взрывающейся звезды и в этой лаборатории можно изучать не только астрофизику, но и физику самих нейтрино.

Под влиянием идеи о том, что большие детекторы протонного распада могут выступать также в роли астрофизических нейтринных детекторов, несколько групп физиков начали строительство нового поколения таких двухцелевых детекторов. Крупнейший из них был вновь построен в шахте Камиока; он получил название «Супер‑Камиоканде», и не случайно. Этот громадный пятидесятитысячетонный резервуар воды, окруженный 11 146 фотоумножителями, функционировал в действующей шахте, и при этом в эксперименте поддерживались условия лабораторной чистоты. Это было абсолютно необходимо, потому что в детекторе таких размеров приходится заботиться об устранении не только внешних космических лучей, но и внутренних радиоактивных загрязнителей в воде, способных похоронить под лавиной информации любые нужные сигналы.

Тем временем интерес к родственным астрофизическим нейтринным сигналам в этот период тоже достиг новых высот. Солнце порождает нейтрино в ходе ядерных реакций в ядре, питающих его энергией; за двадцать с лишним лет при помощи громадного подземного детектора Рей Дэвис сумел обнаружить солнечные нейтрино, но частота событий при этом была примерно втрое ниже той, что предсказывалась лучшими моделями Солнца. Теперь в глубокой шахте в Садбери (Канада) был построен детектор солнечных нейтрино нового типа, получивший известность как Нейтринная обсерватория Садбери – SNO.

«Супер‑Камиоканде» с различными доработками почти постоянно работает более двадцати лет. За это время не были обнаружены ни сигналы протонного распада, ни сигналы от других вспышек сверхновых. Однако высокоточные наблюдения нейтрино на этом громадном детекторе, дополненные наблюдениями на SNO, с определенностью установили, что дефицит солнечных нейтрино, обнаруженный Реем Дэвисом, реален и, более того, объясняется не какими‑то астрофизическими эффектами на Солнце, но свойствами самих нейтрино. По крайней мере один из трех известных типов нейтрино не полностью лишен массы, хотя его масса очень мала, возможно в сто миллионов раз меньше массы электрона – следующей по легкости частицы в природе. А поскольку Стандартная модель не предусматривает масс для нейтрино, это стало первым определенным указанием на то, что в природе действует какая‑то неизвестная пока физика, выходящая за пределы Стандартной модели и хиггсовского поля.

Вскоре наблюдения нейтрино высоких энергий, постоянно бомбардирующих Землю после того, как высокоэнергетические протоны космических лучей сталкиваются с атмосферой и порождают настоящий ливень частиц, включая и нейтрино, продемонстрировали, что и второй тип нейтрино обладает массой. Его масса несколько больше, но все же намного уступает массе электрона. За эти результаты руководители SNO и «Камиоканде» получили Нобелевскую премию 2015 г. – ровно за неделю до того, как я написал первый черновой вариант этих слов. Эти дразнящие намеки на новую физику до сих пор не находят объяснения в современных теориях.

Отсутствие протонного распада хотя и принесло физикам разочарование, не оказалось совсем уж неожиданным. С той поры, когда Великое объединение было впервые предложено, физический ландшафт слегка изменился. Более точные измерения реальной силы трех негравитационных взаимодействий вкупе с более изощренными расчетами изменения силы этих взаимодействий с расстоянием показали, что если в природе не существует ничего, кроме частиц Стандартной модели, то силы трех взаимодействий не объединяются друг с другом в одном масштабе. Чтобы Великое объединение произошло, необходимы дополнительно какие‑то новые физические законы на масштабах энергии, выходящих за рамки тех, что удавалось наблюдать до сих пор. Присутствие новых частиц должно не только изменить скорость, с которой три известных взаимодействия меняются с масштабом, таким образом, чтобы все они могли объединиться в одном энергетическом масштабе; оно также, скорее всего, повысит масштаб Великого объединения и таким образом снизит частоту протонного распада – и даст протонам предсказанное время жизни, превышающее миллион миллиардов миллиардов миллиардов лет.

Пока происходили все эти события, теоретики не могли не воспользоваться новыми математическими инструментами и не исследовать новый тип симметрии в природе, которую стали называть суперсимметрией. Эта фундаментальная симметрия отличается от любой известной нам ранее тем, что связывает два разных типа частиц – фермионы (частицы с полуцелым спином) и бозоны (частицы с целым спином). Суть этого явления (множество книг, в том числе и моих, подробно разбирают эту идею) сводится к тому, что если эта симметрия имеет место в природе, то для каждой известной частицы Стандартной модели должна существовать по крайней мере одна соответствующая ей новая элементарная частица. Для каждого известного бозона должен существовать новый фермион, а для каждого известного фермиона – новый бозон.

Поскольку мы пока не видели этих частиц, ясно, что эта симметрия не может проявляться в окружающем нас мире на том уровне, на котором мы его воспринимаем, и, кроме того, она должна быть нарушена, а значит, все новые частицы будут обладать массами, причем массами достаточно большими, чтобы частицы эти нельзя было увидеть ни на одном из построенных до сих пор ускорителей.

Что может быть такого привлекательного в симметрии, чтобы вдруг удвоить все частицы в природе без всяких доказательств существования каких бы то ни было новых частиц? В значительной мере ее соблазнительность кроется в самом факте Великого объединения. Поскольку если теория Великого объединения проявляется на масштабе масс, на пятнадцать‑шестнадцать порядков выше массы покоя протона, то этот масштаб также примерно на тринадцать порядков превышает тот, на котором нарушается электрослабая симметрия. И встает большой вопрос: как и почему может существовать такая громадная разница в масштабах для фундаментальных законов природы? Или иначе: если частица Хиггса из Стандартной модели действительно представляет собой последний уголок этой модели, то почему энергетический масштаб нарушения хиггсовской симметрии на тринадцать порядков уступает тому масштабу, на котором нарушается симметрия, связанная с каким‑то новым полем, которое необходимо ввести, чтобы нарушить симметрию Великого объединения и разделить составляющие его силы?

Проблема эта куда серьезнее, чем кажется. Скалярные частицы, такие как бозон Хиггса, имеют несколько новых квантово‑механических свойств, не похожих на свойства фермионов со спином 1, таких как калибровочные частицы. При рассмотрении влияния виртуальных частиц, включая частицы сколь угодно большой массы, такие как калибровочные частицы гипотетической теории Великого объединения, оказывается, что они ведут к повышению массы бозона Хиггса и, соответственно, масштаба, на котором нарушается хиггсовская симметрия, таким образом, что он, по существу, сближается или даже сходится с тяжелым ТВО‑масштабом. Это порождает проблему, получившую известность как проблема естественности. С формальной точки зрения неестественно иметь громадный разрыв между масштабом, на котором электрослабая симметрия нарушается механизмом Хиггса, и масштабом, на котором симметрия ТВО нарушается неким неизвестным тяжелым скалярным полем.

Блестящий математический физик Эдвард Виттен утверждал в известной статье 1981 г., что суперсимметрия обладает одним особым свойством. Она способна смягчать действие, которое виртуальные частицы сколь угодно большой массы и энергии оказывают на свойства мира в масштабах, которые мы в состоянии в данный момент исследовать. Поскольку виртуальные фермионы и виртуальные бозоны равной массы вносят совершенно одинаковые, различающиеся только знаком квантовые поправки, то, если каждый бозон сопровождается фермионом такой же массы, квантовые эффекты этих виртуальных частиц взаимно компенсируются. Это означает, что влияние виртуальных частиц сколь угодно большой массы и энергии на физические свойства Вселенной в масштабах, доступных нашему измерению, может быть полностью устранено.

Однако если сама суперсимметрия тоже нарушается, то квантовые поправки полностью компенсироваться не будут. Вместо этого они будут давать свой вклад в массы, причем того же масштаба, как и масштаб, на котором нарушается суперсимметрия. Если бы он был сравним с масштабом нарушения электрослабой симметрии, это объясняло бы масштаб массы частицы Хиггса. Это означает также, что нам следует ожидать появления множества новых частиц – суперсимметричных партнеров обычного вещества – на масштабе, исследованием которого в настоящее время занимается БАК.

Это разрешило бы проблему естественности, поскольку защитило бы массу бозона Хиггса от возможных квантовых поправок, способных загнать ее вверх до масштабов энергии, связанных с Великим объединением. Суперсимметрия допускала бы «естественную» большую разницу в энергиях (и массах) между электрослабым масштабом и масштабом Великого объединения.

Тот факт, что суперсимметрия могла бы в принципе решить проблему иерархии, как ее стали называть, сильно повысил ее репутацию в глазах физиков. Это побудило теоретиков начать исследование реалистичных моделей, включающих в себя нарушение суперсимметрии, и других физических следствий из этой идеи. Когда они занялись этим, рейтинг суперсимметрии подскочил до небес. Поскольку если включить возможность спонтанного нарушения суперсимметрии в расчеты изменения трех негравитационных взаимодействий с расстоянием, то внезапно выяснится, что сила всех трех взаимодействий естественным образом сойдется на единственном масштабе очень малых расстояний. Великое объединение снова на коне!

Модели, в которых суперсимметрия нарушается, обладают еще одной привлекательной чертой. Задолго до открытия истинного кварка было указано, что если истинный кварк окажется тяжелым, то через взаимодействия с другими суперсимметричными партнерами он может давать квантовые поправки к свойствам частицы Хиггса, которые вызовут конденсацию поля Хиггса на измеренном для него масштабе энергий, притом что Великое объединение имеет место на куда более высоком, сверхтяжелом масштабе. Короче говоря, энергетический масштаб нарушения электрослабой симметрии может генерироваться естественным образом в рамках теории, в которой Великое объединение происходит при намного более высоком масштабе энергий. Когда истинный кварк был открыт и действительно оказался тяжелым, это добавило привлекательности гипотезе о том, что за наблюдаемый масштаб энергии слабого взаимодействия отвечает, возможно, нарушение суперсимметрии.

Однако за все это приходится платить. Чтобы эта теория работала, должен существовать не один бозон Хиггса, а два. Более того, можно было бы ожидать появления новых суперсимметричных частиц, если удалось бы построить ускоритель вроде БАКа, способный искать новые физические закономерности вблизи электрослабого масштаба. Наконец, хотя какое‑то время это казалось чертовски неприятным ограничением, более легкая частица Хиггса в этой теории не могла быть слишком тяжелой; в противном случае механизм не работал бы.

Пока поиски частицы Хиггса шли безо всяких результатов, ускорители всё ближе подбирались к теоретическому верхнему пределу массы легкого бозона Хиггса. Предел этот располагался где‑то около 135 масс протона, а подробности в некоторой степени зависели от модели. Если бы до этого предела частицы Хиггса не обнаружилось, следовало бы сделать вывод, что весь шум по поводу суперсимметрии не более чем шум.

Но дело обернулось иначе. Частица Хиггса, которую удалось пронаблюдать на БАКе, имеет массу около 125 масс протона. Возможно, Великое объединение уже рядом.

Ответ в настоящее время… не слишком ясен. Сигнатуры новых суперсимметричных партнеров обычных частиц должны были быть настолько заметными на БАКе, что многие из нас считали, что у БАКа гораздо больше шансов открыть суперсимметрию, чем обнаружить бозон Хиггса. Но получилось не так. Сегодня, после трех лет работы БАКа, у нас по‑прежнему нет никаких признаков частиц‑суперпартнеров. Ситуация уже начинает выглядеть некомфортной. Нижнее ограничение на массы суперсимметричных партнеров обычного вещества поднимается все выше. Но если оно поднимется слишком высоко, то масштаб нарушения суперсимметрии уже не будет близок к электрослабому масштабу и многие привлекательные черты нарушения суперсимметрии как средства решения проблемы иерархии исчезнут.

Пока, однако, ситуация не безнадежна, а БАК вновь включен, на этот раз на более высоких энергиях. Может так случиться, что в какой‑то год между написанием этих слов и десятым переизданием этой книги суперсимметричные частицы будут обнаружены.

Если действительно так и произойдет, это повлечет за собой еще одно важное следствие. Одна из крупнейших загадок космологии – природа скрытой массы, составляющей, судя по всему, большую часть массы всех наблюдаемых нами галактик. Как я уже упоминал, ее так много, что она просто не может состоять из тех же частиц, из которых состоит нормальное вещество. В противном случае расчеты, к примеру, обилия легких элементов, возникших в процессе Большого взрыва, таких как гелий, уже не сходились бы с данными наблюдений. Поэтому физики практически уверены, что «темная материя» состоит из элементарных частиц неизвестного типа. Но из каких именно?

Самый легкий суперсимметричный партнер обычного вещества в большинстве моделей абсолютно стабилен и обладает многими свойствами нейтрино. Он должен, по идее, слабо вступать во взаимодействие и быть электрически нейтральным, так что он не будет излучать или поглощать свет. Более того, расчеты, проведенные мной и другими физиками более тридцати лет назад, показали, что остаточное обилие легчайшей суперсимметричной частицы, оставшейся после Большого взрыва, естественным образом попадает в диапазон, позволяющий этой частице быть той самой темной материей, которая преобладает в массе галактик.

В этом случае наша Галактика должна иметь гало из частиц темной материи, пронизывающих ее во всех направлениях, в том числе пролетающих и через комнату, в которой вы сейчас это читаете. Как многие из нас поняли некоторое время назад, это означает, что если сконструировать чувствительные детекторы и поместить их под землю – аналогично, по крайней мере по духу, уже существующим под землей нейтринным детекторам, – то можно было бы непосредственно регистрировать эти частицы темной материи. В данный момент полдюжины красивых экспериментов по всему миру готовятся делать именно это. Пока, однако, ничего увидеть не удалось.

Так что, возможно, мы сегодня живем в лучшие – или в худшие – времена. Идет гонка между детекторами на БАКе и специальными подземными детекторами темной материи – кто сумеет первым раскрыть ее природу. Если любая из этих групп объявит об обнаружении частиц, это объявление станет сигналом о начале новой эпохи открытий, потенциально способных привести нас к пониманию самого Великого объединения. А если в ближайшие годы не будет сделано никакого открытия, то мы сможем исключить гипотезу о простом суперсимметричном происхождении темной материи, а затем исключить и саму гипотезу о суперсимметрии как решении проблемы иерархии. В этом случае нам придется вновь возвращаться к началу и создавать новые гипотезы – правда, если мы не получим с БАКа никаких новых сигналов, то не будем знать, в каком направлении двигаться, чтобы построить модель природы, которая в конечном итоге может оказаться верной.

Ситуация стала еще интереснее, когда БАК сообщил о заманчивом сигнале, говорящем, возможно, о новой частице примерно вшестеро тяжелее бозона Хиггса. Эта частица не обладала характеристиками, которые можно было бы ожидать от какого‑нибудь суперсимметричного партнера обычного вещества. Обычно самые волнующие, выбивающиеся из ряда вон сигналы уходят, когда набирается больше данных, и где‑то через полгода после первого появления этого сигнала, когда набралось больше данных, он исчез. Если бы этого не произошло, он мог бы полностью изменить наши представления о теориях Великого объединения и электрослабой симметрии, с появлением взамен нового фундаментального взаимодействия и нового набора частиц, чувствующих это взаимодействие. Но, хотя загадочный сигнал породил множество оптимистичных теоретических статей, природа, судя по всему, решила иначе.

Надо сказать, что одну группу физиков‑теоретиков отсутствие ясного экспериментального направления или подтверждения суперсимметрии пока не беспокоит. Математическая красота суперсимметрии подтолкнула ученых в 1984 г. к возрождению идеи, дремавшей с 1960‑х гг., когда Намбу и другие пытались разобраться в сильном взаимодействии, представив его как теорию кварков, соединенных между собой струноподобными возбуждениями. Когда суперсимметрия была включена в квантовую теорию струн, чтобы получить новую теорию суперструн, начали появляться поразительно красивые математические результаты, включая возможность объединения не только трех негравитационных взаимодействий, но всех четырех известных сил природы в единую непротиворечивую квантовую теорию поля.

Однако эта теория требует существования целого набора новых пространственно‑временных измерений, ни одного из которых никому до сих пор не удалось увидеть. Кроме того, эта теория не дает предсказаний, проверяемых при помощи хотя бы задуманных на данный момент экспериментов. Наконец, в последнее время эта теория сильно усложнилась, так что теперь сами струны, кажется, уже не являются в ней главными динамическими переменными.

Все это нисколько не пригасило энтузиазм плотного ядра высокоталантливых физиков, преданных этой идее; более тридцати лет – с середины 1980‑х гг., времени ее максимальной популярности, они продолжают работать над теорией суперструн, которая теперь носит название M‑теории. Периодически появляются заявления о крупных успехах, но до сих пор M‑теории недостает ключевого элемента, делающего Стандартную модель триумфом научной мысли: способности установить контакт с миром, который мы в состоянии измерить, разрешить неразрешимые прежде загадки и дать фундаментальные объяснения тому, как возник наш мир и почему он получился именно таким. Это не означает, что M‑теория неверна, но в данный момент это по большей части ничем не подтвержденные рассуждения, хотя рассуждения разумные и хорошо мотивированные.

Здесь не место разбирать историю проблемы и успехи теории струн. Я, как и некоторые другие мои коллеги, уже сделал это в другом месте. При этом стоит помнить, что если уроки истории могут служить ориентирами, то передовые физические идеи по большей части оказываются ошибочными. Если бы это было не так, кто угодно мог бы заниматься теоретической физикой. Потребовалось несколько столетий – или если начинать с древних греков, то несколько тысячелетий – проб и ошибок, чтобы предложить наконец Стандартную модель.

Итак, вот точка, где мы находимся. Ожидают ли нас в самом ближайшем будущем новые экспериментальные открытия, которые позволят подтвердить или опровергнуть какие‑то грандиозные спекуляции физиков‑теоретиков? Или мы на пороге пустыни, где природа не даст нам никаких указаний на то, в каком направлении углублять исследования фундаментальной природы мироздания? Мы с этим разберемся, и нам так или иначе придется жить с этой новой реальностью.

Неважно, какие подвохи, возможно, готовит нам природа в будущем; недавнее открытие бозона Хиггса – последнее по времени и одно из величайших экспериментальных и теоретических достижений замечательной Стандартной модели физики элементарных частиц – блестяще увенчало собой более двух тысячелетий интеллектуальных усилий смелых и упорных философов, математиков и физиков, стремившихся понять скрытую ткань реальности, лежащую в основе нашего существования.

Это открытие позволяет также предположить, что прекрасная Вселенная, в которой нам выпало жить, не только напоминает, по крайней мере метафорически, ледяной кристалл на оконном стекле, но, возможно, почти столь же эфемерна.

 

Глава 23


Дата добавления: 2019-09-02; просмотров: 215; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!