Ложь говорит каждый своему ближнему; уста льстивы, говорят от сердца притворного.



Псалтырь 11:2

 

Сейчас ошибки прошлого могут показаться очевидными, но не забывайте, что объекты, наблюдаемые в зеркале заднего вида, часто оказываются ближе, чем кажется. Легко критиковать наших предшественников за упущения, но и то, что сегодня ставит нас в тупик, нашим потомкам может показаться очевидным. Работая на переднем крае науки, мы движемся по тропе, зачастую скрытой в тумане.

Аналогия со сверхпроводимостью, которую впервые использовал Намбу, полезна, но в основном по совершенно иным причинам, чем думали в свое время Намбу и другие. Задним числом ответ может показаться чуть ли не очевидным, как становятся очевидными после финала все намеки и детали, указывающие на убийцу в романах Агаты Кристи. Но, как и в этих детективах, на пути исследователя возникает множество отвлекающих деталей, а тупиковые направления делают полученное в конечном итоге решение еще более неожиданным.

Можно только посочувствовать физикам в той неразберихе, что царила тогда в исследованиях элементарных частиц. Вводились в строй новые ускорители, и всякий раз, когда преодолевался новый порог энергии столкновения, перед изумленным взором ученых появлялись новые сильно взаимодействующие родичи нейтронов и протонов. Процесс казался бесконечным. Это обескураживающее разнообразие заставляло и теоретиков, и экспериментаторов сконцентрироваться на загадке сильного ядерного взаимодействия: казалось, что именно в нем заключается самый серьезный вызов существующей теории.

Казалось, микромир можно описать как потенциально бесконечное число элементарных частиц со все возрастающими массами. Но все это плохо сочеталось с идеями квантовой теории поля – успешной концепции, сумевшей чудесно объяснить релятивистское квантовое поведение электронов и фотонов.

Физик Джеффри Чу из Университета в Беркли возглавил работу над популярной и влиятельной программой разрешения этой проблемы. Чу отказался от идеи существования каких бы то ни было по‑настоящему фундаментальных частиц и от всякой микроскопической квантовой теории с участием точечных частиц и связанных с ними квантовых полей. Вместо этого он предположил, что все наблюдаемые частицы, участвующие в сильном взаимодействии, вовсе не являются точечными, а представляют собой сложные связанные состояния других частиц. С этой точки зрения редукция к первичным фундаментальным объектам невозможна. Такая дзеновская картина была весьма уместной для Беркли 1960‑х гг. Все частицы мыслились в ней состоящими из других частиц. Это так называемая бутстрапная модель, в которой никакие элементарные частицы не считались первичными или особыми. Поэтому такой подход называли также ядерной демократией.

Этот подход получил поддержку многих физиков, успевших уже разочароваться в квантовой теории поля как инструменте для описания любых взаимодействий, за исключением самых простых взаимодействий между электронами и фотонами. Однако некоторые ученые были так впечатлены успехом квантовой электродинамики, что попытались выстроить аналогичную ей теорию сильного ядерного взаимодействия (такое название за ним закрепилось) по лекалам, предложенным ранее Янгом и Миллсом.

Один из этих физиков, Дж. Сакураи, опубликовал в 1960 г. статью, довольно амбициозно озаглавленную: «Теория сильных взаимодействий». Сакураи всерьез воспринял предложение Янга и Миллса и попытался досконально разобраться, какие из фотоноподобных частиц могли бы переносить сильное взаимодействие между протонами, нейтронами и другими новооткрытыми частицами. Поскольку сильное взаимодействие проявляется только на малых расстояниях, не превышающих размеров ядра, представлялось разумным, что частицы, необходимые для переноса этого взаимодействия, должны быть массивными, что несовместимо с какой бы то ни было точной калибровочной симметрией. Но, с другой стороны, они должны были обладать многими свойствами, аналогичными свойствам фотонов, и иметь спин, равный 1, – так называемый векторный спин. Новые предсказанные частицы назвали массивными векторными мезонами. Они должны были связываться с различными токами сильно взаимодействующих частиц, так же как фотоны связываются с токами электрически заряженных частиц.

Частицы с общими свойствами предсказанных Сакураи векторных мезонов были открыты экспериментально уже в следующие два года, и мысль о том, что они могут каким‑то образом раскрыть секрет сильного взаимодействия, стояла за попытками с их помощью разобраться в сложных взаимодействиях между нуклонами и другими частицами.

В ответ на предположение о том, что в основе сильного взаимодействия может лежать какая‑то разновидность симметрии Янга – Миллса, Мюррей Гелл‑Манн разработал изящную схему симметрии, которую в духе дзен назвал восьмеричным путем. Эта схема не только позволяла классифицировать восемь различных векторных мезонов, но и предсказывала существование новых, не наблюдавшихся до той поры частиц, участвующих в сильном взаимодействии. Идея о том, что эти новопредложенные симметрии природы, возможно, помогут привнести порядок в то, что казалось на тот момент безнадежным паноптикумом элементарных частиц, оказалась настолько захватывающей, что, когда предсказанная им частица была‑таки открыта, Гелл‑Манн получил Нобелевскую премию.

Но Гелл‑Манна чаще всего вспоминают в связи с другой, более фундаментальной идеей. Он – и независимо от него Джордж Цвейг – ввел то, что Гелл‑Манн назвал кварками , заимствовав это слово из романа Джеймса Джойса «Поминки по Финнегану»; кварки помогли ученым физически объяснить свойства симметрий восьмеричного пути. Если предположить, что именно из кварков, которые Гелл‑Манн рассматривал всего лишь как удобный инструмент для математических расчетов (точно так же Фарадей в свое время рассматривал предложенные им электрическое и магнитное поля), состоят все участвующие в сильном взаимодействии частицы, такие как протоны и нейтроны, то удавалось предсказать все симметрии и свойства известных частиц. И вновь в воздухе, казалось, повисло предчувствие близкого великого объединения, в результате которого разрозненные частицы и силы сольются в одно упорядоченное целое.

Значение гипотезы о кварках невозможно переоценить. Хотя Гелл‑Манн и не утверждал, что его кварки представляют собой реальные физические частицы внутри протонов и нейтронов, предложенная им схема систематизации означала, что соображения симметрии, возможно, определяют в конечном итоге природу не только сильного взаимодействия, но и всех фундаментальных частиц в природе.

Однако утверждение о том, что один сорт симметрии, возможно, управляет строением вещества, еще ничего не говорило о том, что эта симметрия может быть расширена до некоторой разновидности калибровочной симметрии Гелл‑Манна, определяющей взаимодействия между частицами. Уже надоевшая проблема наблюдаемых масс векторных мезонов означала, что они не могут по‑настоящему отражать какую бы то ни было лежащую в основе сильного взаимодействия калибровочную симметрию, так чтобы однозначно определять ее форму и потенциально обеспечивать ей квантово‑механический смысл. Любое расширение квантовой электродинамики по Янгу – Миллсу требовало, чтобы новые фотоноподобные частицы обладали нулевой массой. И точка.

И как раз в тот момент, когда физики столкнулись с этим непреодолимым на первый взгляд препятствием, прозвучал неожиданный звоночек от сверхпроводимости, открывший другую, более тонкую, но в конечном итоге более глубокую возможность.

Первым, кто разворошил погасшие было угли, стал теоретик, работавший непосредственно в области физики конденсированных сред, связанной со сверхпроводимостью в различных материалах. Филип Андерсон в Принстонском университете, позже получивший Нобелевскую премию за другие работы, предположил, что одно из наиболее фундаментальных и универсальных явлений в сверхпроводниках стоит рассмотреть в контексте физики элементарных частиц.

Одна из самых впечатляющих демонстраций, которые можно провести со сверхпроводниками, особенно с новыми высокотемпературными сверхпроводниками, в которых сверхпроводимость проявляется при температуре жидкого азота, состоит в том, чтобы заставить магнит висеть в воздухе над сверхпроводником, как показано на рисунке.

 

 

Это возможно по причине, которую экспериментально открыл в 1933 г. Вальтер Мейснер с коллегами, а объяснили теоретики Фриц и Хайнц Лондон двумя годами позже; причина эта известна как эффект Мейснера.

Как открыли Фарадей и Максвелл за шестьдесят лет до этого, электрические заряды по‑разному отзываются на магнитное и электрическое поля. В частности, Фарадей открыл, что переменное магнитное поле может вызывать электрический ток в удаленном проводнике. Не менее важно, хотя раньше я этого не подчеркивал, что результирующий ток будет течь таким образом, чтобы породить новое магнитное поле в направлении, противоположном меняющемуся внешнему магнитному полю. Таким образом, если внешнее поле ослабевает, то возбужденный ток породит магнитное поле, которое противится этому ослаблению. Если оно усиливается, то возбужденный ток будет течь в противоположном направлении, порождая магнитное поле, которое будет противиться этому росту.

Вы, возможно, замечали, что если во время разговора по сотовому телефону вы заходите в лифт, особенно в такой, где внешняя часть лифтовой шахты обшита металлом, то после закрытия дверей ваш звонок сбрасывается. Это пример действия так называемой клетки Фарадея. Поскольку сигнал принимается телефоном в виде электромагнитной волны, металл прикрывает вас от внешнего сигнала; дело в том, что токи в металле текут так, чтобы по возможности гасить меняющиеся электрическое и магнитное поля сигнала, снижая таким образом его силу внутри лифта.

Если бы у вас был идеальный проводник безо всякого электрического сопротивления, то заряды в металле могли бы, по существу, скомпенсировать любое действие внешнего переменного электромагнитного поля. Внутри лифта не осталось бы никакого сигнала этих переменных полей, то есть никакого телефонного сигнала, который можно было бы принять. Более того, идеальный проводник экранировал бы также действие любого постоянного внешнего электрического поля, поскольку в ответ на любое поле заряды в сверхпроводнике могут перераспределиться так, чтобы полностью его скомпенсировать.

Но эффект Мейснера этим не ограничивается. В случае сверхпроводника никакие магнитные поля, даже постоянные магнитные поля – такие, каким обладает магнит на картинке, не могут проникать внутрь сверхпроводника. Дело в том, что, если вы медленно подносите магнит издалека ближе, в сверхпроводнике возбуждается ток, компенсирующий меняющееся магнитное поле, которое усиливается с приближением магнита. Но, поскольку речь идет о сверхпроводящем материале, ток в нем продолжит течь и не остановится даже тогда, когда вы перестанете двигать магнит. Затем, если вы поднесете магнит еще ближе, в сверхпроводнике возникнет больший ток, чтобы скомпенсировать усиление поля. И так далее. Таким образом, поскольку электрические токи в сверхпроводнике могут течь без рассеивания, экранируются не только электрические поля, но и магнитные. Вот почему магниты могут левитировать над сверхпроводниками. Токи в сверхпроводнике выталкивают магнитное поле внешнего магнита, и это отталкивает магнит в точности так же, как если бы на поверхности сверхпроводника находился другой магнит, северный полюс которого был бы обращен к северному полюсу внешнего магнита (или южный полюс – к южному).

Братья Лондоны, которые первыми попытались объяснить эффект Мейснера, вывели уравнение, описывающее это явление внутри сверхпроводника. Результат наводил на размышления. Каждому отдельному типу сверхпроводника соответствует характерная величина подповерхностного слоя, определяемая микроскопической природой сверхпроводящих токов, возникающих в материале для компенсации внешних полей, – и любое внешнее магнитное поле на этой глубине гасится. Эта величина называется лондоновской глубиной проникновения. Для разных сверхпроводников эта глубина зависит от деталей их микрофизики, но как именно зависит, братья определить не смогли, поскольку микроскопической теории сверхпроводимости в то время не было.

Тем не менее само наличие глубины проникновения поразительно, поскольку подразумевает, что электромагнитное поле в сверхпроводнике ведет себя не так, как обычно, – оно больше не является дальнодействующим. Но если электромагнитные поля под поверхностью сверхпроводника становятся близкодействующими, то и носитель электромагнитных взаимодействий должен вести себя необычно. Какой же из этого следует вывод? Фотон в сверхпроводнике ведет себя так, будто он обладает массой.

В сверхпроводниках виртуальные фотоны, как и переносимые ими электрические и магнитные поля, могут распространяться под поверхностью только на расстояние, сравнимое с лондоновской глубиной проникновения, – в точности так, как обстояло бы дело, если бы электромагнетизм внутри сверхпроводника был результатом обмена массивными, а не безмассовыми фотонами.

Теперь представьте, каково было бы жить внутри сверхпроводника. Для вас электромагнетизм был бы силой с малым радиусом действия, фотоны – массивными частицами, а вся знакомая физика, которую мы связываем с электромагнетизмом как дальнодействующей силой, исчезла бы.

Я хочу еще раз подчеркнуть, как необычна и замечательна эта ситуация. Ни один эксперимент, который вы могли бы провести внутри сверхпроводника – при условии, что он остается в сверхпроводящем состоянии, не показал бы, что во внешнем мире фотоны не имеют массы. Если бы вы были платоновским философом внутри такого сверхпроводника, вам понадобилось бы огромное число догадок об окружающем мире, чтобы прийти к выводу, что некое загадочное и невидимое явление порождает такую иллюзию. Не одна тысяча лет была бы потрачена на размышления и эксперименты, прежде чем вы или ваши потомки смогли бы догадаться о природе реальности, лежащей в основе мира теней, в котором вы живете, или создать устройство, обладающее достаточной энергией для разбиения куперовских пар и выхода из сверхпроводящего состояния; при этом электромагнетизм был бы восстановлен в его нормальном виде и выяснилось бы, что фотон не имеет массы.

Задним числом можно сказать, что мы, физики, могли бы догадаться (просто из соображений симметрии, без непосредственного рассмотрения эффекта Мейснера), что фотоны внутри сверхпроводника должны бы, в принципе, вести себя как массивные частицы. Конденсат куперовских пар состоит из электронов и потому обладает суммарным электрическим зарядом. Это нарушает калибровочную симметрию электромагнетизма, потому что на этом фоне любые положительные заряды, добавленные к веществу, будут вести себя иначе, чем добавленные отрицательные заряды. Так что теперь существует реальное различие между положительным и отрицательным. Но не забывайте, что отсутствие массы у фотонов – признак того, что электромагнитное поле является дальнодействующим, а дальнодействующая природа электромагнитного поля говорит о том, что локальные вариации в определении электрического заряда в одном месте не влияют на физические законы глобально, во всем объеме вещества. Но если калибровочная инвариантность пропала, то локальные изменения в определении электрического заряда будут иметь реальный физический эффект, и такого дальнодействующего поля, которое могло бы гасить эти изменения, существовать не может. Один из способов избавиться от дальнодействующего поля состоит в том, чтобы сделать фотон массивным.

А теперь вопрос на 64 000 долларов: а не может ли что‑то подобное происходить в мире, где мы обретаемся? Может ли причиной наличия масс у тяжелых фотоноподобных частиц служить то, что на самом деле мы живем в чем‑то похожем на космический сверхпроводник? Именно этот жгучий вопрос поднял Андерсон, по крайней мере в части аналогии с настоящими сверхпроводниками.

Прежде чем ответить на этот вопрос, нам необходимо разобраться в некотором техническом волшебстве, позволяющем наделить массой фотон в сверхпроводнике.

Вспомним, что в электромагнитной волне электрическое (E) и магнитное (B) поля колеблются туда‑сюда в направлениях, перпендикулярных направлению движения волны, как показано на рисунке.

 

 

Поскольку перпендикулярных направлений два, электромагнитную волну можно изобразить двумя способами. Волна может выглядеть так, как показано на рисунке, а можно поменять поля E и B местами. Это результат того, что электромагнитные волны имеют две степени свободы, которые называют двумя разными поляризациями.

Это объясняется калибровочной инвариантностью электромагнетизма или, что то же самое, отсутствием у фотона массы. Однако если бы у фотонов была масса, то результатом стало бы не только нарушение калибровочной инвариантности, но и возникновение третьего варианта. Электрическое и магнитное поля могли бы колебаться вдоль направления движения, вместо того чтобы придерживаться только перпендикулярных к нему направлений. (Поскольку фотоны уже не двигались бы со скоростью света, стали бы возможны колебания вдоль направления движения частиц.)

Но это означает, что соответствующие массивные фотоны должны иметь не две, а три степени свободы. Как же могут фотоны в сверхпроводниках обрести эту лишнюю степень свободы?

Андерсон исследовал этот вопрос в сверхпроводниках, и его решение тесно связано с фактом, о котором я уже говорил. Если бы в сверхпроводнике не было электромагнитных взаимодействий, в конденсате куперовских пар можно было бы производить небольшие пространственные изменения с энергозатратами сколь угодно малой величины, потому что куперовские пары не взаимодействовали бы друг с другом. Однако, если принять во внимание электромагнетизм, эти низкоэнергетические моды (которые уничтожили бы сверхпроводимость) исчезают, и как раз потому, что заряды в конденсате взаимодействуют с электромагнитным полем. Это взаимодействие заставляет фотоны в сверхпроводнике вести себя так, как если бы они обладали массой. Новый режим поляризации массивных фотонов в сверхпроводнике возникает, когда конденсат колеблется в ответ на проходящую электромагнитную волну.

На языке физики элементарных частиц безмассовые моды Намбу – Голдстоуна, соответствующие корпускулярному варианту исчезающе малых в ином случае энергетических колебаний в конденсате, «съедаются» электромагнитным полем, что придает фотонам массу и новую степень свободы и делает электромагнитное взаимодействие в сверхпроводнике близкодействующим.

Андерсон предположил, что это явление – при котором безмассовый в ином случае фотон исчезает в сверхпроводниках, и безмассовая в ином случае мода Намбу – Голдстоуна тоже исчезает, и обе они вместе соединяются и порождают массивный фотон – может оказаться важным для решения давней задачи создания массивных фотоноподобных частиц Янга – Миллса, которые, возможно, связаны с сильными ядерными взаимодействиями.

Андерсон на этом остановился, оставив в подвешенном состоянии предположение о том, что этот механизм, придуманный по аналогии со сверхпроводниками, может быть применим и в теории элементарных частиц. Так же как и Намбу в свое время остановился на рассмотрении спонтанного нарушения симметрии в физике элементарных частиц по аналогии со сверхпроводимостью, но не исследовал связанное со сверхпроводимостью явление, на котором позже сосредоточился Андерсон, – эффект Мейснера, придающий массу фотонам в сверхпроводниках. Явное приложение всех этих идей к физике элементарных частиц было еще впереди.

В результате физическое сообщество не сумело сразу же распознать возможные глубокие следствия из теории сверхпроводимости для понимания физики фундаментальных частиц, и они какое‑то время еще оставались в тени.

Пока мысль о том, что мы, возможно, живем в каком‑то космическом сверхпроводнике, не внушала доверия. В конце концов, человек любит выдумывать дичайшие истории для объяснения непонятного, любит изобретать фантастические и скрытые причины всего вроде богов и демонов. Было ли более правдоподобным заявление о существовании во всем пространстве какого‑то невидимого конденсата полей, призванного объяснить природу того, что иначе представлялось непонятным в сильном ядерном взаимодействии?

 

Глава 16


Дата добавления: 2019-09-02; просмотров: 212; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!