Отчаянные времена и отчаянные меры



 

Всему свое время, и время всякой вещи под небом.

Екклесиаст 3:1

 

Стремительная смена событий в 1930‑х гг., от открытия нейтрона до исследования природы нейтронного распада, вкупе с открытием нейтрино и последовавшим за ним открытием в природе нового универсального слабого взаимодействия, действующего на малых расстояниях, скорее запутала, чем вдохновила физиков. Блестящий марш, приведший в свое время к объединению электричества и магнетизма, а также к объединению квантовой механики и теории относительности, опирался в первую очередь на исследование природы света. Однако оставалось неясным, как элегантное теоретическое сооружение квантовой электродинамики могло бы направить исследования нового взаимодействия. Слабое взаимодействие по природе своей очень далеко от непосредственного человеческого опыта и при этом имеет дело с новыми и весьма экзотическими элементарными частицами и ядерными превращениями, которые чем‑то напоминают алхимические трансмутации, но, в отличие от них, проверяемы и воспроизводимы.

Фундаментальная проблема была связана в первую очередь с природой самого атомного ядра и вопросом о том, что удерживает вместе его частицы. Открытие нейтрона помогло разрешить парадокс, который ранее, казалось, требовал присутствия в ядре электронов для компенсации заряда дополнительных протонов, необходимых для получения верной атомной массы, однако наблюдение бета‑распада, в результате которого из ядра вылетали электроны, не помогло делу.

Понимание того, что в процессе бета‑распада нейтроны в ядре превращаются в протоны, кое‑что прояснило, но затем естественным образом возник следующий вопрос: может ли это превращение как‑то объяснить сильную связь, удерживающую протоны и нейтроны вместе внутри ядра?

Несмотря на очевидные различия между слабым взаимодействием и квантовой теорией электромагнетизма (КЭД), на размышления физиков о слабом взаимодействии влиял и замечательный успех КЭД в описании поведения атомов и взаимодействия электронов со светом. Математические симметрии, связанные с КЭД, прекрасно работали, обеспечивая исчезновение бесконечностей в расчетах для предсказания физических величин, связанных с обменом виртуальными частицами. Что, если нечто подобное помогло бы нам разобраться в силах, связывающих протоны и нейтроны в ядре?

А именно: если электромагнитная сила является результатом обмена частицами, то разумно предположить, что сила, связывающая составляющие ядра воедино, также может быть результатом обмена частицами. Вернер Гейзенберг предложил эту идею в 1932 г., примерно в то же время, когда был открыт нейтрон. Если протоны и нейтроны способны превращаться друг в друга, причем протон поглощает электрон, чтобы стать нейтроном, то, возможно, этот самый обмен электронами между ними может каким‑то образом порождать связующую силу?

Однако эту красивую картину портило множество хорошо известных проблем. Первой из них была проблема спина. Если предполагать, как это сделал Гейзенберг, что нейтрон, по существу, состоит из протона и электрона, связанных воедино, и поскольку обе эти частицы обладают полуцелым спином, то их соединение в виде нейтрона никак не может тоже иметь полуцелый спин, поскольку ½ + ½ не может равняться ½. Гейзенберг возражал, в отчаянии – ведь то были отчаянные времена, когда, казалось, рушились все традиционные правила, – что тот «электрон», который передается между нейтронами и протонами и связывает их вместе в ядре, отличается некоторым образом от свободного электрона и вообще не имеет спина.

Задним числом можно заметить, что в этой картине есть своя проблема. Гейзенберг склонен был считать именно электроны средством связи протонов и нейтронов, потому что размышлял он не о чем‑нибудь, а о молекулах водорода. В водороде H2 два протона связываются воедино благодаря тому, что обращающиеся вокруг них электроны являются общими для обеих частиц. Но если попытаться объяснить аналогичным образом связывание частиц не в молекуле, а в ядре, возникает проблема масштаба. Как могут нейтроны и протоны обмениваться электронами и быть связаны между собой настолько тесно, что среднее расстояние между ними оказывается в сто с лишним тысяч раз меньше молекулы водорода?

Вот еще один способ размышлять об этой проблеме, который пригодится нам позже. Вспомните, что электромагнетизм – это сила, действующая на больших расстояниях. Два электрона в противоположных концах Галактики испытывают взаимное отталкивание, хотя и чрезвычайно слабое, благодаря обмену виртуальными фотонами. В квантовой теории электромагнетизма это возможно. Фотоны не имеют массы, и виртуальные фотоны могут улетать сколь угодно далеко и нести на себе сколь угодно малые количества энергии, прежде чем будут поглощены вновь – без нарушения принципа неопределенности Гейзенберга. Если бы фотоны обладали массой, это было бы невозможно.

Итак, если некое взаимодействие между протонами и нейтронами в ядре возникает благодаря поглощению и испусканию, скажем, виртуальных электронов, то это взаимодействие будет работать только на коротких расстояниях, поскольку электроны обладают массой. Насколько коротких? Оказывается, примерно в сто раз превосходящих размер типичного ядра. Так что обмен электронами не годится для обеспечения взаимодействий ядерного масштаба. Как я уже сказал, это были отчаянные времена.

Отчаянная идея Гейзенберга о странной бесспиновой версии электрона не пропала втуне: она вдохновила молодого японского физика, скромного двадцативосьмилетнего Хидэки Юкаву. В 1935 г., когда Япония только начинала выходить из многовековой изоляции, но как раз перед тем, как ее имперские планы разожгли на Тихом океане пожар войны, Юкава опубликовал первую оригинальную работу по физике, написанную ученым, получившим все образование в Японии. По крайней мере два года никто не обращал на эту работу внимания, но четырнадцать лет спустя Юкава был удостоен за нее Нобелевской премии; к тому моменту статья была замечена, но по неверным причинам.

Визит Эйнштейна в Японию в 1922 г. окончательно закрепил растущий интерес Юкавы к физике. Когда старшекласснику Юкаве потребовались материалы для подготовки к экзамену по второму иностранному языку, под руку ему попалась книга Макса Планка «Введение в теоретическую физику» на немецком. Читая ее, он получал огромное удовольствие и от языка, и от физики, а помогал ему в этом одноклассник Синъитиро Томонага – талантливый физик, с которым Юкава вместе учился и в школе и позже в Киотском университете. Томонага был настолько талантлив, что позже, в 1965 г., получил Нобелевскую премию вместе с Ричардом Фейнманом и Джулианом Швингером за демонстрацию математической непротиворечивости квантовой электродинамики.

Удивительно, что Юкава, учившийся в Японии в те времена, когда многие из его наставников еще не понимали до конца недавно появившуюся новую область физики – квантовую механику, натолкнулся на возможное решение задачи ядерного взаимодействия, которого не заметили ни Гейзенберг, ни Паули, ни даже Ферми. Подозреваю, что отчасти это можно объяснить феноменом, который неоднократно наблюдался в физике XX века, а может быть, встречался и раньше и будет встречаться еще. Когда парадоксы и сложности, связанные с неким физическим процессом, начинают казаться огромными и непреодолимыми, возникает соблазн решить, что дело не обойдется без новой революции, подобной теории относительности или квантовой механике, и это потребует таких масштабных сдвигов в мышлении, что кажется бессмысленным продолжать попытки найти решение при помощи существующих технологий.

Ферми, в отличие от Гейзенберга и Паули, не занимался поисками каких‑то революционных новшеств. Он готов был предложить, по его словам, «предварительную теорию» нейтронного распада, которая позволяла избавиться от электронов в ядре, разрешив им спонтанно возникать в процессе бета‑распада. Он предложил работающую модель, понимая при этом, что это всего лишь модель, а не полноценная теория, – но она позволяла проводить расчеты и делать предсказания. Можно сказать, что в этом суть практичного стиля Ферми.

Юкава следил за развитием событий, он перевел работу Гейзенберга об атомных ядрах вместе с предисловием и опубликовал ее в Японии, так что проблемы, связанные с предложением Гейзенберга, были ему ясны. Затем, в 1934 г., Юкава познакомился с теорией нейтронного распада Ферми, и та заронила в его сознание новую идею. Может быть, ядерное взаимодействие, связывающее протоны и нейтроны в ядре, обусловлено не просто обменом виртуальными электронами между ними, но обменом сразу парой электрон – нейтрино, возникающей при превращении нейтронов в протоны?

Однако сразу же возникла еще одна проблема. Распад нейтрона – результат того, что позже стало известно как слабое взаимодействие, и сила, отвечающая за него, слаба. При подстановке величин для возможной силы, которая могла бы возникнуть между протонами и нейтронами при обмене парой электрон – нейтрино, становилось ясно, что эта сила получилась бы слишком слабой, чтобы их связывать.

Тогда Юкава позволил себе то, что не позволял никто из остальных. Он задал себе вопрос: почему ядерная сила, если она, подобно тому как это имеет место в КЭД, возникает в результате обмена виртуальными частицами, должна основываться непременно на обмене одной или несколькими частицами, существование которых физикам известно или по крайней мере предполагается? Помня, как не любили тогда физики – взять хотя бы Дирака или Паули – предлагать новые частицы, даже если для того были все основания, вы сможете, наверное, оценить, насколько радикальной была идея Юкавы. Позже Юкава описывал это так:

 

В тот период атомное ядро представляло собой воплощенное противоречие и совершенно не поддавалось объяснениям. А почему? Потому, что наша концепция элементарной частицы была слишком узкой. В японском языке такого слова вообще не было, и мы пользовались английским словом, а означало оно протон и электрон. Казалось, откуда‑то было принято Божественное послание, запрещающее нам думать о каких бы то ни было других частицах. Думать о чем‑то вне этих рамок (за исключением фотона) значило проявлять наглость и отсутствие страха Божия. А дело было в том, что концепция вечности материи была традиционной и брала начало со времен Демокрита и Эпикура. Размышления о возникновении частиц, если это не фотоны, казались подозрительными, и в отношении таких мыслей существовал сильный, почти подсознательный, запрет.

 

Один из хороших моих приятелей‑физиков говорит, что единственными периодами, когда ему удавалось провести сложные вычисления, были периоды после рождения каждого из его детей, когда спать он так и так был не в состоянии, так что проще было встать и поработать. Так в октябре 1934 г., будучи не в состоянии заснуть вскоре после рождения второго ребенка, Юкава вдруг понял, что если расстояние, на котором работает сильное ядерное взаимодействие, должно быть ограничено размером ядра, то любая частица, участвующая при этом в обмене, должна быть намного тяжелее электрона. На следующее утро он оценил массу такой частицы примерно в двести масс электрона. При этом частица, если ею должны обмениваться нейтроны с протонами, непременно должна обладать электрическим зарядом, но не может иметь спина, чтобы спин протона или нейтрона при ее поглощении или высвобождении не менялся бы.

Вы можете спросить, какое отношение все эти тревоги по поводу сильного ядерного взаимодействия имеют к распаду нейтрона – теме, которой началась эта глава и закончилась предыдущая? В 1930‑е гг. не только размышления о новых частицах раздражали и вызывали внутренний протест, но и придумывание новых сил казалось занятием в лучшем случае ненужным, а в худшем случае – еретическим. Физики были убеждены, что все процессы, происходящие в ядре, сильные или слабые, должны быть связаны между собой.

Юкава придумал хитроумный способ добиться этого, соединив идеи Ферми и Гейзенберга, а также обобщив идеи успешной квантовой теории электромагнетизма. Если вместо того, чтобы испускать фотон, нейтроны в ядре испускают новую частицу – тяжелую заряженную частицу без спина, которую Юкава первоначально назвал мезотроном, но затем Гейзенберг поправил его греческий и название было сокращено до мезона, – то эту частицу могут поглощать протоны ядра, порождая при этом силу притяжения, величину которой Юкава смог рассчитать при помощи уравнений, экстраполированных им, как вы уже догадались, из теории электромагнетизма.

Однако аналогия с электромагнетизмом не могла быть полной, поскольку мезон массивен, а фотон массы не имеет. Юкава поступил так же, как мог бы поступить Ферми, если бы ему пришла в голову такая идея. Да, теория неполна, но Юкава готов был игнорировать остальные аспекты электромагнетизма, которые его теория воспроизвести не могла. Плевать на торпеды, полный вперед!

Юкава изобретательно – и, как выяснилось в конечном итоге, неверно – связал сильное взаимодействие с наблюдаемым нейтронным распадом, предположив, что мезоны, возможно, не всегда служат просто объектом обмена между нейтронами и протонами в ядре. Небольшая доля мезонов, испущенных нейтронами, по пути, прежде чем поглотиться, возможно, распадается на электрон и нейтрино, что приводит к распаду нейтрона. В этом случае нейтронный распад будет изображаться не так, как на рисунке слева, где и его исчезновение, и образование других частиц происходят в одной точке, а будет выглядеть скорее как на рисунке справа, где распад, можно сказать, размазывается в пространстве и новая частица (мезон Юкавы), показанная пунктирной линией, проходит небольшое расстояние, прежде чем распасться на электрон и нейтрино. С этой новой частицей‑посредником слабое взаимодействие, обеспечивающее распад нейтрона, начинает больше походить на электромагнитное взаимодействие между заряженными частицами.

 

 

Юкава предложил новую частицу‑посредник, тяжелый мезон, с которым нейтронный распад выглядел похожим на известную картину обмена фотонами в электромагнетизме, – собственно, она и вдохновила его на эти размышления, – но с заметными отличиями. Промежуточная частица здесь обладала одновременно и массой, и электрическим зарядом; кроме того, в отличие от протона у нее не было спина, то есть момента импульса.

Юкава сумел показать, что для тяжелого мезона его теория будет неотличима от точечного взаимодействия Ферми, по крайней мере в предсказании деталей нейтронного распада. Кроме того, теория Юкавы позволяла свести все странные свойства ядра – от бета‑распада нейтронов внутри ядра до силы взаимодействия, связывающей воедино протоны и нейтроны, – к необходимости разобраться в свойствах одного‑единственного нового взаимодействия, которое является результатом обмена новой частицей – его мезоном.

Однако оставалось неясным: если новый тяжелый мезон существует, то где он? Почему никто до сих пор не видел его хотя бы в космических лучах? По этой причине, а также потому, что Юкава был никому не известен и работал далеко от всех центров, где происходили главные события, никто не обратил сколько‑нибудь серьезного внимания на его предложение, призванное объяснить одновременно и сильное взаимодействие между нуклонами, и более слабое взаимодействие, которое, как представлялось, отвечает за нейтронный распад. Тем не менее его гипотеза, в отличие от гипотез Гейзенберга и других физиков (включая Ферми), была проще и лучше отвечала здравому смыслу.

Все изменилось в 1936 г., менее чем через два года после предсказания Юкавы, Когда Карл Андерсон, первооткрыватель позитрона, и его коллега Сет Неддермейер обнаружили в космических лучах нечто, на первый взгляд показавшееся новым набором частиц. Характеристики треков этих новых частиц в туманных камерах позволяли предположить, что они слишком слабо излучают при прохождении через вещество, чтобы быть протонами или электронами. Кроме того, они были массивнее электронов и имели, кажется, иногда положительный, а иногда отрицательный заряд. Вскоре выяснилось, что масса новых частиц лежит в предсказанном Юкавой диапазоне и составляет около двухсот масс электрона.

Удивительно, как быстро спохватился остальной мир. Юкава опубликовал короткую заметку, в которой указал, что его теория предсказывает именно такие частицы. Уже через несколько недель крупнейшие физики Европы взялись исследовать его модель и включать его идеи в свою работу. В 1938 г., на последней крупной конференции перед тем, как Вторая мировая война прекратила почти все международное сотрудничество в науке, из восьми основных докладчиков трое говорили о теории Юкавы, называя имя, с которым еще год или два назад были совершенно незнакомы.

Хотя значительная часть околофизического мира праздновала очевидное открытие мезона Юкавы, само это открытие не было лишено серьезных проблем. В 1940 г. в треках космических лучей удалось пронаблюдать предсказанный Юкавой распад мезона с образованием электрона. Однако в 1943–1947 гг. стало ясно, что частицы, открытые Андерсоном и Неддермейером, взаимодействуют с атомным ядрами намного слабее, чем должна была бы взаимодействовать частица Юкавы.

Что‑то было не так.

Трое японских коллег Юкавы предположили, что мезоны бывают двух разных сортов и что мезон Юкавы, возможно, распадается с образованием другого мезона, иного и взаимодействующего намного слабее. Но статьи этих ученых были написаны по‑японски и не публиковались на английском языке до окончания войны, а к тому моменту аналогичное предположение было высказано американским физиком Робертом Маршаком.

Как ни странно, эта задержка оказалась даже полезной. Были разработаны новые методы наблюдения треков космических лучей в фотоэмульсиях, и целые группы храбрых исследователей потащили свое оборудование на все имеющиеся горы в поисках возможных новых сигналов. Многие частицы космических лучей вступают во взаимодействие и исчезают еще до достижения уровня моря, так что у научных групп, жаждущих исследовать чудный новый источник частиц, прилетающих прямо с небес, просто не было другого выбора, кроме как искать местечко повыше. Здесь космическим лучам приходилось проходить сквозь атмосферу меньшее расстояние и обнаруживать их было легче.

Джузеппе Оккиалини, бывший итальянский горный проводник, ставший физиком, во время войны был приглашен из Бразилии, чтобы работать с британской командой, занимавшейся атомной бомбой. Как иностранец, он не мог непосредственно участвовать в проекте, так что присоединился в Бристоле к группе физиков, занимавшихся космическими лучами. Горная подготовка Оккиалини оказалась полезна, когда ему пришлось затаскивать фотографические эмульсии на французский Пик‑дю‑Миди высотой две тысячи восемьсот метров. Сегодня в эту обсерваторию на вершине пика можно доехать по канатной дороге – это жуткое и захватывающее путешествие. Но в 1946 г. Оккиалини пришлось, рискуя здоровьем, лезть на вершину в попытке уловить сигналы экзотической новой физики.

И ему вместе с его командой действительно удалось открыть эту новую экзотическую физику. По словам Сесила Пауэлла, одного из коллег Оккиалини по Бристолю (и будущего нобелевского лауреата, в отличие от Оккиалини, которому Нобелевки не досталось), они увидели «целый новый мир. Мы как будто внезапно вломились в огороженный защитной стеной сад, где пышно цвели деревья и зрели во множестве всевозможные экзотические фрукты».

Если воспользоваться менее поэтическим языком, то обнаружили они два случая, когда в толще эмульсии первоначальный мезон прекратил существование, породив при этом второй мезон, – в точности как предполагали теоретики. Когда же эмульсии подняли на высоту, почти вдвое превышающую Пик‑дю‑Миди, ученым удалось зарегистрировать немало новых событий. В октябре 1947 г. в журнале Nature Пауэлл, Оккиалини и ученик Пауэлла Чезаре Латтес опубликовали статью, в которой назвали первоначальный мезон – тот, что, судя по данным наблюдений, взаимодействовал с ядерной силой, подходящей для мезона Юкавы, – пионом, а мезон, возникающий в результате его распада, – мюоном.

Казалось, что мезон Юкавы наконец‑то открыт. Что же до его «партнера» – мюона, который прежде путали с мезоном Юкавы, то это была совсем другая частица. Во‑первых, она не была лишена спина; напротив, она имела такой же спин, как электрон и протон. А ее взаимодействие с веществом было далеко не таким сильным, чтобы играть какую‑то роль в ядерном связывании. Мюон оказался просто тяжелой, хотя и нестабильной копией электрона, что и послужило поводом для вопроса Раби: «А это кто заказывал?»

Итак, в конечном итоге оказалось, что частица, прославившая в 1936 г. Юкаву, вовсе не была той, которую он предсказал. Его идея приобрела известность потому, что первоначальный экспериментальный результат был неверно интерпретирован. К счастью, Нобелевский комитет дождался открытия пиона в 1947 г., прежде чем присудить Юкаве премию в 1949 г.

Учитывая длинную череду ошибок и присвоения неверных имен, естественно задаться вопросом: действительно ли пион был той частицей, которую предсказал Юкава? Ответ: одновременно и да и нет. Обмен заряженными пионами между протонами и нейтронами действительно позволяет точно оценить сильное ядерное взаимодействие, скрепляющее ядра атомов. Но, помимо заряженных пионов – мезонов, предсказанных Юкавой, существуют и нейтральные пионы. А их кто заказывал?

Более того, выдвинутая Юкавой теория для описания сильного взаимодействия, как и теория Ферми для описания нейтронного распада, не была полностью математически согласованной, что признавал и сам Юкава, когда предлагал ее. В то время еще не существовало корректной релятивистской теории, описывающей обмен массивными частицами. Чего‑то по‑прежнему не хватало, и серия удивительных экспериментальных открытий в сочетании с провидческими теоретическими идеями, которые, к сожалению, применялись не к тем теориям, привели к десяти с лишним годам путаницы, прежде чем туман рассеялся и появился свет в конце туннеля. Или, может быть, в устье пещеры.

 

Глава 12

Марш титанов

 

Тогда волк будет жить вместе с ягненком, и барс будет лежать вместе с козленком…

Исайя 11:6

 

Отношения между теоретическим озарением и экспериментальным открытием – один из интереснейших аспектов развития науки. В основе своей физика, как любая естественная наука, представляет собой эмпирическую дисциплину. Но бывают моменты, когда всё меняют короткие вспышки теоретических озарений. Безусловно, хорошим примером может служить проникновение Эйнштейна в природу пространства и времени в первые два десятилетия XX века. Другой пример – замечательный теоретический прогресс, связанный с разработкой квантовой механики Шрёдингером, Гейзенбергом, Паули, Дираком и другими в 1920‑е гг.

Менее известен период с 1954 г. по 1974 г., который, хотя и не был настолько революционным, по прошествии некоторого времени будет рассматриваться как одна из наиболее плодотворных и продуктивных эпох в физике XX века. Эти два десятилетия перевели нас, не без сумятицы, от хаоса к порядку, от замешательства к уверенности, от уродства к красоте. Это была бешеная гонка с несколькими, казалось бы, беспричинными блужданиями по окольным путям, – но наберитесь терпения! Если путь покажется вам слегка неудобным, вспомните, что я говорил во «Введении» о науке и комфорте. Только поставив себя на место тех, кто участвовал в этом квесте, чье разочарование вылилось со временем в озарения, только проникнувшись образом их мыслей, можно по‑настоящему оценить значение этих озарений.

Этот бурный период следовал за временем, когда экспериментальные сенсации порождали только всеобщее замешательство и делали природу «всё страньше и страньше», как мог бы сказать Льюис Кэрролл. Открытие позитрона и вскоре после него нейтрона были только началом. Распад нейтрона, ядерные реакции, мюоны, пионы и целая куча последовавших за ними других новых элементарных частиц создавали впечатление, что фундаментальная физика – это нечто безнадежно сложное. Простая картина Вселенной, в которой одни только электромагнетизм и гравитация управляют взаимодействиями вещества, состоящего из протонов и электронов, отправилась на свалку истории. Некоторые физики того времени, подобно некоторым политикам сегодняшнего дня, жаждали простоты старых добрых дней, которая зачастую существовала лишь в их воображении.

Под впечатлением этой новообнаруженной сложности к 1960‑м гг. некоторые физики решили, что в природе нет вообще ничего фундаментального. В своем воображении они создали сюрреалистичную картину, в которой все элементарные частицы состоят из всех остальных элементарных частиц, а представление о фундаментальных взаимодействиях всего лишь иллюзия.

Тем не менее где‑то в глубине зрели теоретические идеи, которым суждено было отдернуть завесу невежества и путаницы, открыв взгляду базовую структуру природы, столь же замечательную, сколь и странно простую, в которой свет вновь играет ключевую роль.

Началось все с двух теоретических достижений: одного глубокого, но не замеченного, а другого – относительно прямолинейного, но блестящего и немедленно получившего известность. Примечательно, что в обе эти работы был вовлечен один и тот же человек.

Ян Чжэньнин родился в 1922 г. в семье математика. Образование он получил в Китае, причем в 1938 г., спасаясь от японского нашествия, был вынужден перебраться из Пекина в Куньмин. Четыре года спустя он окончил курс Национального юго‑западного объединенного университета и остался в нем еще на два года. Тогда же он встретился с другим студентом, Ли Цундао, тоже вынужденно перебравшимся в Куньмин. Имея лишь смутное представление о Соединенных Штатах, оба они тем не менее в 1946 г. получили стипендии, учрежденные американским правительством на деньги Китая; эти деньги должны были дать талантливым китайским студентам возможность учиться в Америке. Ян уже имел диплом магистра, а потому пользовался большей свободой и мог выбирать, где защищать степень доктора философии; вместе с Ферми он перебрался из Колумбийского университета в Чикагский и приобрел американскую транскрипцию фамилии – Янг[11]. У Ли особого выбора не было, поскольку степени магистра он не имел, но единственным университетом в США, где он мог готовить диссертацию сразу на докторскую степень, тоже оказался Чикагский университет. Янг готовил диссертацию под руководством Эдварда Теллера и уже через год после выпуска работал непосредственно с Ферми в качестве помощника, а Ли готовил диссертацию под руководством Ферми.

В 1940‑е гг. Чикагский университет был одним из ведущих центров теоретической и экспериментальной физики США, и его выпускники получали бесценный опыт общения с замечательными учеными – это были не только Ферми и Теллер, но и другие ученые, включая блестящего, но при этом очень скромного астрофизика Субраманьяна Чандрасекара. В девятнадцать лет Чандра, как часто называли его коллеги, доказал, что звезды с массой, более чем в 1,4 раза превышающей массу Солнца, в конце цикла ядерного горения должны катастрофически схлопываться либо через процесс, известный сегодня как взрыв сверхновой, либо непосредственно в то, что мы сегодня называем черной дырой. Хотя в то время теория молодого астрофизика была встречена насмешками, пятьдесят три года спустя он получил за нее Нобелевскую премию.

Чандра был не только блестящим ученым, но и, подобно Ферми, прирожденным педагогом. Занимаясь исследованиями в Йеркской обсерватории (штат Висконсин), он не ленился каждую неделю проезжать сто миль туда и обратно, чтобы вести занятия у двух студентов, записавшихся на его семинары, – Ли и Янга. В конечном итоге все члены группы, включая и профессора, стали нобелевскими лауреатами (вероятно, это уникальный случай в истории науки).

В 1949 г. Янг перебрался в престижный Институт перспективных исследований в Принстоне, где продолжал плодотворно сотрудничать с Ли по разнообразным темам. В 1952 г. Янг получил в этом институте пожизненную должность, тогда как Ли в 1953 г. перебрался в расположенный неподалеку, в Нью‑Йорке, Колумбийский университет, где и работал до выхода в отставку.

Каждый из этих людей внес в физику значительный вклад в различных областях, но прославившее их сотрудничество началось со странного экспериментального результата, опять же связанного с наблюдением космических лучей.

В том же году, когда Янг покинул Чикагский университет и начал работать в Институте перспективных исследований, первооткрыватель пиона Сесил Пауэлл обнаружил в космических лучах еще одну новую частицу, которую назвал тау‑мезоном. Эта частица, согласно наблюдениям, распадалась на три пиона. Вскоре после этого была обнаружена еще одна частица, получившая название тета‑мезона; она распадалась на два пиона. Как ни удивительно, выяснилось, что эта частица имеет в точности такую же массу и точно такое же время жизни, что и тау‑мезон.

Возможно, это не покажется вам таким уж странным. Может быть, это одна и та же частица, просто ученые наблюдали два разных варианта ее распада? Не забывайте, что в квантовой механике все, что не запрещено, может произойти, и поскольку новая частица достаточно массивна, чтобы распадаться хоть на два, хоть на три пиона, – а слабое взаимодействие допускает оба варианта, – то и другое должно время от времени происходить.

Но, по здравому смыслу, слабое взаимодействие не должно было бы разрешать оба варианта распада.

Подумайте, к примеру, на мгновение о своих руках. Ваша левая рука отличается от правой. Никакой простой физический процесс, за исключением прохода сквозь зеркало и попадания в зазеркалье, не способен превратить левую руку в правую и наоборот. Никакая последовательность движений – подъем или опускание рук, поворот вокруг оси или подпрыгивание на месте – не сможет превратить одно в другое.

Силы, определяющие наш опыт, – электромагнетизм и гравитация – не различают право и лево. Никакой процесс, управляемый одним из этих двух типов взаимодействия, не может превратить нечто в его же зеркальное отражение. Так, невозможно превратить вашу правую руку в левую, просто направляя на нее свет.

Иными словами, если я направлю луч света на вашу правую руку и взгляну на нее издалека, интенсивность отраженного света будет точно такой же, какой была бы, если бы я проделал то же самое с вашей левой рукой. Свету, когда он отражается от объекта, нет дела до левого и правого.

Вообще, определение левого и правого введено нами по соглашению. Завтра мы можем решить, что левое – это правое и наоборот, и ничего не изменится, кроме наших ярлычков. Я пишу этот текст в самолете, в салоне эконом‑класса, и человек в кресле справа от меня, вполне возможно, сильно отличается от человека слева, но опять же это всего лишь стечение случайных обстоятельств. Не думаю, что законы природы, которым подчиняется полет этого самолета, по‑разному действуют на правое его крыло и на левое.

А теперь задумаемся, как все это выглядит в субатомном мире. Энрико Ферми, как мы помним, выяснил, что по правилам квантовой механики математическое поведение групп или пар элементарных частиц зависит от того, обладают ли они полуцелым спином, то есть являются ли фермионами. Поведение групп фермионов резко отличается от поведения таких частиц, как фотоны, у которых спин имеет значение 1 (или любое другое целое значение, к примеру 0, 1, 2, 3 и т. д.). Математическая «волновая функция», описывающая пару фермионов к примеру, антисимметрична, тогда как аналогичная функция, описывающая пару фотонов, симметрична. Это означает, что, если поменять частицы местами, волновая функция, описывающая фермионы, поменяет знак. Но для таких частиц, как фотоны, волновая функция при такой замене останется прежней.

Поменять две частицы местами – то же самое, что отразить их в зеркале. Та, что была слева, теперь будет находиться справа, и наоборот. Таким образом, существует тесная связь между такой заменой и тем, что физики называют четностью и что является совокупной характеристикой подвергаемой отражению системы (то есть системы, в которой право и лево меняются местами).

Если некая элементарная частица распадается на две другие частицы, то волновая функция, описывающая «четность» конечного состояния (то есть сообщающая, поменяет ли волновая функция знак при замене правых частиц на левые и наоборот), позволяет нам присвоить исходной частице некую величину, которую мы тоже назовем четностью. И если сила в квантовой механике, управляющая распадом, игнорирует различие между правым и левым, то и сам распад не изменит четности квантового состояния системы.

Если же волновая функция системы антисимметрична в отношении обмена частиц после распада, то система имеет «отрицательную» четность. В этом случае волновая функция, описывающая начальное квантовое состояние распадающейся частицы, тоже должна обладать отрицательной четностью (то есть менять знак при обмене правого и левого).

Так вот, пионы – частицы, существование которых предположил Юкава, а открыл Пауэлл, – имеют отрицательную четность, так что волновая функция, описывающая квантовое состояние их зеркального отражения, должна иметь другой знак по сравнению с первоначальной волновой функцией. Различие между положительной и отрицательной четностью – это как различие между чудесным круглым мячом, который в зеркале выглядит точно так же, как без него, и потому характеризуется положительной четностью, и, скажем, вашей рукой, которая при отражении в зеркале меняет вид, превращаясь из правой в левую, и потому, можно сказать, характеризуется отрицательной четностью.

 

 

 

Из‑за этих несколько абстрактных соображений наблюдаемые данные, связанные с распадом новых, открытых Пауэллом частиц, поставили физиков в тупик. Поскольку четность пиона отрицательна, четность пары пионов должна быть положительной, поскольку (–1)2 = 1. Однако система из трех пионов, по тем же соображениям, будет иметь отрицательную четность, так как (–1)3 = –1. Таким образом, если при распаде частицы четность не меняется, одна и та же частица не может распадаться до двух разных конечных состояний с разной четностью.

Если бы сила, ответственная за распад, вела себя так же, как вели себя в те времена все остальные известные силы, такие как электромагнетизм или гравитация, то она игнорировала бы четность (не различала бы правое и левое) и потому не меняла бы в процессе распада первоначальную четность системы – точно так же, как свет, направленный на вашу правую руку, не сделает ее похожей на левую.

Поскольку представлялось невозможным, чтобы некий тип частиц распадался иногда на два, а иногда на три пиона, решение казалось простым. Требуется не одна, а две новые элементарные частицы с противоположными характеристиками четности. Пауэлл окрестил их тау‑частицей и тета‑частицей; одна из них распадалась на два пиона, другая – на три.

Наблюдения говорили о том, что эти две частицы обладают в точности одинаковой массой и временем жизни, что казалось немного странным, но Ли и Янг предположили, что это может быть общим свойством различных элементарных частиц; согласно их гипотезе, частицы существуют парами с противоположными значениями четности. Они назвали эту идею «удвоением четности».

Так выглядела ситуация весной 1956 г., когда началась Международная конференция по физике высоких энергий, проходившая каждый год в Университете Рочестера. В 1956 г. все сообщество ученых, интересующихся физикой элементарных частиц и ядерной физикой, легко вмещалось в одну университетскую лекционную аудиторию, и все эти ученые, включая и сильнейших игроков, старались приехать на эту ежегодную встречу. На той конференции Ричард Фейнман жил в одной комнате с Марти Блоком. Будучи экспериментатором, Блок не так остро реагировал на еретическое в то время предположение о том, что какая‑то сила в природе может не быть слепа по отношению к правому и левому, и потому он спросил Фейнмана, не может ли оказаться так, что слабое взаимодействие, управляющее распадами, которые наблюдал Пауэлл, различает правое и левое. Это позволило бы одной и той же частице распадаться до состояний разной четности – имелось в виду, что тау‑ и тета‑частицы оказались бы на поверку одной и той же частицей.

Блоку не хватило дерзости поднять этот вопрос на общем заседании, но Фейнману хватило, хотя сам он считал этот вариант чрезвычайно маловероятным. Янг ответил, что он и Ли думали об этом, но пока из этой идеи ничего не вышло. На заседании присутствовал и Юджин Вигнер, который позже получил Нобелевскую премию за разъяснение важности таких вещей, как четность, в атомной и ядерной физике; он тоже поднял вопрос о том, не может ли слабое взаимодействие различать правое и левое.

Однако всё достается победителю, а от простых рассуждений о возможном нарушении четности новым типом фундаментального взаимодействия, способным, может быть, различать левое и правое, было далеко до того, чтобы это продемонстрировать. Месяцем позже Ли и Янг, обедая в нью‑йоркском кафе, решили еще раз проанализировать все известные эксперименты, имевшие дело со слабым взаимодействием, чтобы понять, можно ли по данным какого‑нибудь из них отвергнуть всякую возможность нарушения четности. Проделав это, они, к собственному огромному удивлению, поняли, что ни один эксперимент наверняка это не устанавливает. Янг позднее вспоминал: «Тот факт, что сохранение четности при слабом взаимодействии так долго не подвергалось сомнению без всяких экспериментальных доказательств, поражал воображение. Но еще поразительнее была перспектива того, что закон симметрии пространства – времени, который физики так хорошо изучили, может нарушаться. Эта перспектива нам не нравилась».

К чести Ли и Янга следует отметить, что молодые ученые предложили несколько экспериментов, при помощи которых можно было проверить возможность того, что слабое взаимодействии различает правое и левое. Они предложили рассматривать бета‑распад нейтрона в ядре кобальта‑60. Поскольку это радиоактивное ядро обладает ненулевым спином (моментом импульса), то есть ведет себя так, будто вращается вокруг своей оси, оно также работает как крохотный магнит. Во внешнем магнитном поле такие ядра выстраиваются в направлении поля. Если электроны, испущенные при распаде нейтрона в ядре, в конечном итоге оказываются преимущественно в одном полушарии, а не в другом, то это признак нарушения четности, поскольку в зеркале те же электроны оказались бы в противоположном полушарии.

Если бы это оказалось правдой, то означало бы, что на фундаментальном уровне природа различает правое и левое. Тогда и созданные человеком различия между ними (не зря же «правый» означает не только сторону, но и правоту) оказались бы не совершенно искусственными. Таким образом, мир в зеркале можно было бы отличить от реального мира, или, как позже образно сформулировал Ричард Фейнман, мы могли бы использовать этот эксперимент, чтобы отправить послание марсианам, информирующее их, какое направление является «левым», – скажем, то полушарие, где наблюдается появление большего числа электронов, – и для этого не нужно будет рисовать картинку.

Тогда такая возможность казалась настолько маловероятной, что многих в физическом сообществе эта инициатива позабавила, но никто не спешил поставить предложенный эксперимент. То есть никто, кроме коллеги Ли по Колумбийскому университету – физика‑экспериментатора У Цзяньсюн, известной также как мадам Ву.

Даже сегодня мы нередко сетуем на малое число женщин среди физиков, обучающихся в американских университетах, но в 1956 г. ситуация была много хуже. О чем говорить, если до конца 1960‑х гг. женщин даже не принимали в большинство университетов Лиги плюща. Почти через тридцать лет после того как У (Ву) прибыла из Китая в 1936 г. на учебу в Беркли, журнал Newsweek в посвященной ей статье привел такое ее высказывание: «Безобразие, что в науке так мало женщин… В Китае множество женщин занимается физикой. В Америке бытует ложное представление, что все женщины‑ученые – неряшливые старые девы. Виноваты в этом мужчины. В китайском обществе женщина ценится за то, что она собой представляет, и мужчины поощряют ее достижения – но при этом она остается бесконечно женственной».

Как бы то ни было, Ву была специалистом по распаду нейтрона, и заманчивая возможность поискать нарушения четности в слабом взаимодействии, о которой она узнала от своих друзей Ли и Янга, ее заинтриговала. Она отменила поездку с мужем в Европу и занялась этим экспериментом в июне – всего через месяц после того, как Ли и Янг впервые задумались об этой проблеме; к октябрю того же года, когда статья Ли и Янга вышла из печати, она с несколькими коллегами собрала необходимую для эксперимента установку. Через два дня после Рождества того же года они получили результат.

Сегодня эксперименты в области физики элементарных частиц могут занимать десятилетия от задумки до завершения, но в 1950‑е гг. все обстояло не так. Кроме того, это было время, когда физики, судя по всему, не думали о таких вещах, как отпуск и выходные. Несмотря на рождественские праздники, организованные Ли пятничные «китайские завтраки» продолжались, и в первую пятницу после Нового года Ли объявил, что группа Ву обнаружила не просто нарушение четности, но нарушение, максимально возможное в данном эксперименте. Результат настолько всех удивил, что группа Ву продолжила работу в том же направлении, чтобы убедиться, что результат не объясняется каким‑то недоразумением или ошибкой эксперимента.

Тем временем Леон Ледерман и его коллеги Дик Гарвин и Марсель Вайнрич, тоже из Колумбийского университета, поняли, что могут проверить эти результаты в своих экспериментах по распаду пионов и мюонов на университетском циклотроне. Не прошло и недели, как обе группы – а еще Джерри Фридман и Вал Телегди в Чикаго – независимо подтвердили результат с высокой достоверностью и к середине января 1957 г. представили свои статьи в Physical Review . Они навсегда изменили нашу картину мира.

Колумбийский университет созвал, вероятно, первую в истории пресс‑конференцию для объявления научного результата. Фейнман проиграл пари на 50 долларов, а вот Вольфгангу Паули повезло больше. Он 15 января написал из Цюриха письмо Виктору Вайсскопфу в Массачусетский технологический институт, в котором предложил пари на то, то эксперимент Ву не покажет нарушения четности, не зная, что эксперимент ее уже показал. В письме Паули эмоционально восклицал: «Я отказываюсь верить, что Бог – слабосильный левша», продемонстрировав к тому же интересное мнение о бейсболе. Вайсскопф, который к тому моменту уже знал о полученных результатах, оказался слишком честен, чтобы принять предложенное пари.

Узнав новости, Паули некоторое время спустя написал: «Теперь, когда первый шок миновал, я начинаю приходить в себя». Это был настоящий шок. Идея о том, что одна из фундаментальных сил в природе различает правое и левое, всей силой обрушилась и на здравый смысл, и на основания современной физики в том виде, как ее тогда понимали.

Шок был настолько силен, что, чуть ли не впервые в истории Нобелевской премии, воля Нобеля была выполнена надлежащим образом. В его завещании говорится, что премия должна выдаваться ученому или ученым в каждой научной области, чья работа в том году принесла наиболее важные результаты. В октябре 1957 г., почти точно через год после публикации статьи Ли и Янга и всего через десять месяцев после подтверждения, полученного Ву и Ледерманом, тридцатиоднолетний Ли и тридцатичетырехлетний Янг разделили между собой Нобелевскую премию, которая была присуждена им за выдвинутую гипотезу. А вот мадам Ву, которую называли китайской мадам Кюри, пришлось, как ни обидно, довольствоваться честью стать первым лауреатом учрежденной двадцать лет спустя премии Вольфа по физике.

Внезапно слабое взаимодействие стало куда более интересным, но и куда менее понятным. Теория Ферми, которой физики обходились до того момента, строилась примерно по модели теории электромагнетизма. Об электромагнитном взаимодействии можно думать как о силе, возникающей между двумя электрическими токами, соответствующими двум движущимся электронам, между которыми и происходит взаимодействие. Слабое взаимодействие тоже можно представить аналогичным образом, если считать, что в одном из токов нейтрон в процессе взаимодействия превращается в протон, а другой ток образуют вылетающие электрон и нейтрино.

Однако между этими ситуациями есть два принципиальных различия. В слабом взаимодействии по Ферми два тока взаимодействуют в одной точке, а не на расстоянии, и токи в слабом взаимодействии позволяют частицам превращаться из одного типа в другой в процессе движения сквозь пространство.

Если электромагнитные взаимодействия в зеркале выглядят точно так же, как в реальном мире, то в слабом взаимодействии четность нарушается, задействованные в нем «токи» должны будут, как отмечал Паули, иметь «хиральность», то есть направленность, позволяющую различать в них правое и левое, как, к примеру, имеют хиральность штопор и ножницы, отражение которых в зеркале отличается от оригинального предмета.

Нарушение четности при слабом взаимодействии можно уподобить принятому в обществе правилу, согласно которому мы пожимаем друг другу правую руку. У людей зазеркального мира рукопожатие выполняется левыми руками. Таким образом, реальный мир заметно отличается от своего зеркального отражения. Если бы токи в слабом взаимодействии обладали хиральностью, то само слабое взаимодействие могло бы различать правое и левое, и тогда в зазеркальном мире оно выглядело бы не так, как в нашем реальном мире.

Было проделано много работы – и возникло много путаницы, когда физики попытались в деталях разобраться, какие типы новых возможных взаимодействий могли бы заменить простое взаимодействие токов по Ферми, при котором задействованным частицам невозможно было приписать какую бы то ни было хиральность. Теория относительности допускает ряд возможных обобщений взаимодействия Ферми, но результаты различных экспериментов приводили к разным, взаимоисключающим математическим формам для искомого взаимодействия, так что казалось невозможным объяснить все эти результаты одним универсальным слабым взаимодействием.

Примерно в то же время, когда появились первые экспериментальные результаты по распаду нейтрона и мюона, позволяющие предположить, что четность при слабом взаимодействии нарушается в максимально возможной степени, в этой запутанной ситуации начал разбираться студент‑выпускник Рочестерского университета Джордж Сударшан. Он предложил свою теорию универсального взаимодействия, которая могла бы заменить вариант Ферми, – и со временем выяснилось, что его теория верна, – однако из нее также вытекало, что по крайней мере некоторые экспериментальные результаты того времени ошибочны.

История эта завершилась в какой‑то мере трагично. На конференции в Рочестере, через три месяца после того, как было открыто нарушение четности, и через год после того, как Ли и Янг представили свои первые мысли об удвоении четности, Сударшан подал заявку на выступление, чтобы представить свои результаты. Однако, поскольку он был всего лишь студентом, его заявка была отклонена. Его научный руководитель Роберт Маршак, в свое время предложивший Сударшану эту исследовательскую задачу, к тому моменту был поглощен уже другой задачей из области ядерной физики и предпочел провести вместо этого семинар по своей теме. Еще один сотрудник, которого попросили упомянуть в своем выступлении работу Сударшана, также забыл это сделать. Так что дискуссия о возможной форме слабого взаимодействия, проходившая на конференции, в конечном итоге ни к чему не привела.

Ранее, в 1947 г., Маршак первым предположил, что в экспериментах Сесила Пауэлла были открыты два разных мезона, один из которых представляет собой частицу, о существовании которой говорил Юкава, а второй – частицу, которая в настоящее время называется мюоном. Кроме того, Маршак был инициатором Рочестерских конференций и, вероятно, считал, что выпустить на ней с выступлением своего студента было бы фаворитизмом. К тому же, чтобы идея Сударшана работала, по крайней мере некоторые экспериментальные данные должны были оказаться ошибочными, поэтому, вполне возможно, Маршак решил, что представлять эту идею на конференции преждевременно.

Тем летом Маршак работал на корпорацию RAND в Лос‑Анджелесе и позвал с собой Сударшана и еще одного студента. Два самых известных в то время в мире теоретика в области физики элементарных частиц – Фейнман и Гелл‑Манн – работали в Калифорнийском технологическом, и оба они были одержимы разгадкой формы слабого взаимодействия.

Фейнман в свое время не открыл нарушения четности, потому что не стал упорствовать в поиске ответов на вопросы, которые сам же и задал, но с тех пор он успел понять, что его работа по квантовой электродинамике могла бы пролить свет на слабое взаимодействие. Он отчаянно стремился к этому, поскольку чувствовал, что его работа в области КЭД – это всего лишь хитроумное математическое упражнение, куда менее благородное, чем установление формы закона, управляющего одним из фундаментальных взаимодействий в природе. Однако гипотеза Фейнмана относительно формы слабого взаимодействия также, судя по всему, расходилась с экспериментальными данными того времени.

В 1950‑е гг. именно Гелл‑Манну суждено было предложить многие из важнейших в то время и надолго сохранивших свое значение идей в физике элементарных частиц. Он был одним из двух физиков, которые предположили, что протоны и нейтроны состоят из более фундаментальных частиц, которые Гелл‑Манн назвал кварками. У него были собственные причины размышлять о четности и слабом взаимодействии. Основой его успеха в значительной части была сосредоточенность на новых математических симметриях в природе, и он, помимо прочего, использовал эти идеи, чтобы предложить новую возможную форму для слабого взаимодействия, но опять же его идея противоречила экспериментальным данным.

Во время пребывания в Лос‑Анджелесе Маршак организовал для Сударшана завтрак с Гелл‑Манном, на котором они могли бы поговорить о своих идеях. Кроме того, они встретились с выдающимся экспериментатором Феликсом Бёмом, по словам которого, его эксперименты теперь соответствовали их идеям. Сударшан и Маршак узнали от Гелл‑Манна, что его идеи созвучны с гипотезой Сударшана, но что сам Гелл‑Манн планирует, быть может, включить этот момент одним параграфом в длинную статью по общим вопросам слабого взаимодействия.

Тем временем Сударшан и Маршак подготовили статью по своей идее, и Маршак решил приберечь ее и представить осенью на международной конференции в Италии. Однако Фейнман, узнав от Бёма о новых экспериментальных данных, решил – с немалым энтузиазмом, – что его идеи верны, и начал писать статью на эту тему. Гелл‑Манн, будучи очень амбициозным по характеру, решил, что, раз Фейнман пишет статью по этому вопросу, ему тоже стоит написать статью. В итоге руководитель факультета убедил Фейнмана и Гелл‑Манна написать совместную статью, что они и сделали. Статья привлекла огромное внимание и стала знаменитой. Хотя в текст и были включены благодарности за плодотворные дискуссии Сударшану и Маршаку, их собственная статья появилась позже в трудах конференции и не могла соперничать со статьей Фейнмана и Гелл‑Манна в борьбе за внимание физического сообщества.

Позже, в 1963 г., Фейнман, всегда старавшийся проявлять великодушие в отношении идей, публично заявил: «Эту теорию открыли Сударшан и Маршак, но сделали популярной Фейнман и Гелл‑Манн». Но это заявление прозвучало слишком поздно, да и было его явно недостаточно. Даже в лучшие времена трудно было бы конкурировать в вопросах славы с Фейнманом и Гелл‑Манном, и Сударшану пришлось прожить много лет с сознанием того, что универсальную форму слабого взаимодействия, открытую двумя героями мировой физики, первым предложил именно он, причем с большей уверенностью, чем остальные.

Теория Сударшана, красиво изложенная в статье Фейнмана и Гелл‑Манна, получила известность как V‑A‑теория слабого взаимодействия. Название ее имеет сугубо техническое происхождение и станет понятнее в последующих главах, однако фундаментальная идея этой теории проста, хотя и покажется неспециалисту одновременно нелепой и бессмысленной: токи, фигурирующие в теории Ферми, должны быть «левыми».

Чтобы разобраться в этой терминологии, вспомним, что в квантовой механике элементарные частицы, такие как электроны, протоны и нейтрино, обладают вращательным моментом импульса, то есть ведут себя так, как если бы вращались вокруг своей оси, хотя с классической точки зрения точечная частица не может считаться вращающийся. Теперь рассмотрим направление их движения и предположим на мгновение, что частица подобна волчку, вращающемуся вокруг своей оси. Протяните правую руку и расположите ее так, чтобы отставленный большой палец указывал в направлении движения частицы. Теперь согните остальные пальцы. Если они сгибаются в том же направлении (против часовой стрелки), в каком вращается частица/волчок относительно направления движения, то частицу называют правой. Если вытянуть левую руку и проделать ту же операцию, то левая частица будет вращаться по часовой стрелке, соответствуя движению согнутых пальцев вашей руки.

 

 

Если посмотреть на левую руку в зеркало, она будет выглядеть как правая рука; точно так же, если смотреть в зеркало на вращающуюся в полете стрелу, направление ее движения поменяется, так что если в реальном мире стрела летит прочь от вас, то в зеркале она будет лететь к вам, но направление ее вращения не поменяется. Таким образом, в зеркале левая частица превратится в правую. (Так что, если бы у бедняг в Платоновой пещере было зеркало, они, возможно, не удивлялись бы так сильно тому, что тени стрел меняют направление движения.)

Эта рабочая картинка левой частицы неточна, поскольку, если подумать, то левую частицу можно превратить в правую, просто двигаясь быстрее этой частицы. В системе отсчета, в которой человек покоится и видит, как мимо пролетает частица, она, возможно, будет двигаться влево. Но если вы сядете в ракету, направите ее влево и обгоните частицу, то относительно вас она будет двигаться вправо. В результате получается, что представленное выше описание является точным только для частиц, которые не имеют массы и потому движутся со скоростью света. Ведь если частица движется со скоростью света, ничто не может двигаться так быстро, чтобы ее обогнать. Математически точное определение левости частицы должно принимать во внимание данный эффект, но здесь мы к этому больше обращаться не будем.

Электроны могут вращаться в любом направлении, однако V‑A‑теория в математической форме утверждает, что лишь движущиеся электроны с левыми токами способны «чувствовать» слабое взаимодействие и участвовать в распаде нейтрона. Правые токи этого взаимодействия не чувствуют.

И что еще поразительнее, нейтрино чувствуют только слабое взаимодействие, и никакого другого. Насколько мы можем судить, нейтрино бывают только левыми. Дело не только в том, что лишь один сорт нейтринного тока может быть задействован в слабом взаимодействии. Во всех без исключения экспериментальных наблюдениях по сей день не встречалось правых нейтрино, – возможно, это самая наглядная демонстрация нарушения четности в природе.

Кажущаяся глупость такой организации предстала передо мной особенно выпукло несколько лет назад, когда в одном из эпизодов сериала «Звездный путь: Далекий космос 9» офицер по науке на космической станции обнаружила, что в казино, где сосредоточены азартные игры, что‑то не так с законами вероятности. Она пропустила через подозрительное заведение нейтринный луч и обнаружила, что на выходе наблюдаются только левые нейтрино. Ясно, что здесь какой‑то непорядок.

За исключением того, что именно так все и обстоит на самом деле .

Что не так с природой? Как так получается, что по крайней мере для одного из фундаментальных взаимодействий левое и правое не равнозначны? И почему нейтрино так отличаются от всех прочих частиц? Простой ответ на эти вопросы состоит в том, что мы пока этого не знаем, хотя само наше существование, которое является производным от природы известных взаимодействий, напрямую от этого зависит. Это одна из причин, почему мы стараемся это выяснить. Объяснение нового взаимодействия привело к новым загадкам и, подобно большинству загадок в природе, в конечном итоге дало нам ключ, который должен был повести физиков по новому пути открытий. Осознание того, что в природе нет симметрии левого и правого, которую прежде все считали фундаментальной, заставило физиков заново исследовать, как проявляются в нашем мире симметрии и, что еще важнее, как они не проявляются.

 

Глава 13


Дата добавления: 2019-09-02; просмотров: 234; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!