Выбор приспособления и режущего инструмента



 

Одним из показателей экономически рациональной подготовки производства является сокращение трудоемкости и сроков проведения всего подготовительного цикла, основная часть которого в машиностроительном производстве включает проектные работы, изготовление и отладку специальных средств технологического оснащения.

Выполнение этих требований в значительной мере зависит от состава и количества станочных приспособлений, являющихся наиболее трудоемким видом оснастки. Их следует выбирать с учетом конкретных условий подготовляемого производства.

В зависимости от масштаба производства (массовое, серийное, мелкосерийное) и технологических факторов станочные приспособления по назначению и конструкции могут быть разделены на: универсальные, универсально-наладочные (переналаживаемые), универсально-групповые, сборно-разборные, специальные

В среднесерийном производстве лучше всего применить специальное фрезерное приспособление, так как они имеют постоянные установочные базы и зажимающие элементы, и предназначены для установки и закрепления, одинаковых по форме и размерам заготовок.

Специальные приспособления применяются в производствах, где по условиям работы станки на значительное время закрепляются за определенной операцией.

Выбор режущего инструмента.

Фреза концевая – предназначена для обработки деталей на станках с ЧПУ

Фреза R390-032A32-11H

Фреза R216.34-16045-AC38N

Сверло 2301-1415 ВК8 ГОСТ 22736-77 (d=19.0; L=256; l =135)

Сверло 2301-1845 ВК8 ГОСТ 10902-77 (d=6,2; L=101; l =63)

Сверло 2301-1868 ВК8 ГОСТ 10902-77 (d=6,2; L=86; l =52)

Зенкер ø20H9 ГОСТ 21541-76

 

Применяемые методы и инструменты контроля

 

Под контролем в широком смысле имеется в виду понятие, включающее в себя определение как количественных, так и качественных характеристик, например, контроль дефектов наружной поверхности, контроль внутренних пороков металла и др.

В технике наряду с понятием «контроль» широко применяется понятие «измерение».

Измерение - нахождение физической величины с помощью специальных технических средств.

Точность измерений - качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Под методом измерения понимается совокупность используемых измерительных средств и условий их применения.

Методы измерения зависят от используемых измерительных средств и условий измерений и подразделяются на абсолютные, сравнительные, прямые, косвенные, комплексные, элементные, контактные и бесконтактные.

Абсолютный метод измерения характеризуется тем, что прибор показывает абсолютное значение измеряемой величины.

Сравнительный метод отличается тем, что прибор показывает отклонение значения измеряемой величины от размера установочной меры или иного образца.

Так, к абсолютному методу относят измерение микрометром, штангенциркулем, длинномером, а к сравнительному измерение оптиметром, индикаторным нутромером.

Прямой метод измерения заключается в том, что значение искомой величины или ее отклонение отсчитывают непосредственно по прибору. К этому методу относят контроль диаметров микрометром или индикатором на стойке.

При косвенном методе значение искомой величины или отклонение от нее находят по результатам измерения другой величины, связанной с искомой определенной зависимостью. Например, контроль угла синусной линейкой, диаметра по длине дуги и углу, опирающемуся на нее.

Измерительные средства - это технические устройства, используемые при измерениях и имеющие нормированные метрологические свойства (например, различные измерительные приборы, калибры, лекальные линейки, плиты и т.д.).

Для контроля данной детали абсолютным методом применяются следующие средства контроля.

Для измерения наружных и внутренних размеров используются штангенциркули ШЦ1-125-0,05 ГОСТ 166-80, ШЦ-2-300-0,05 ГОСТ 166-80, ШЦ-3-400-0,05 ГОСТ 166-80.

Для контроля толщин детали применяют индикаторный стенкомер С-ЮБ-0,1 ГОСТ 11358-89 с пределом измерения 10 мм.

 

Расчет режимов резания

 

Разработка технологического процесса механической обработки заготовки обычно завершается установлением технологических норм времени для каждой операции. Чтобы добиться оптимальных норм времени на операцию, необходимо в полной мере использовать режущие свойства инструмента и производственные возможности технологического оборудования.

При выборе режимов обработки необходимо придерживаться определённого порядка, т.е. при назначении и расчёте режима обработки учитывают тип и размеры режущего инструмента, материал его режущей части, материал и состояние заготовки, тип оборудования и его состояние. Следует помнить, что элементы режимов обработки находятся во взаимной функциональной зависимости, устанавливаемой империческими формулами.

Определим режимы резания для операции 010 - Фрезерная (фрезеровать поверхность 1 предварительно), фреза торцевая Ø125; Ø посадочного отверстия 40 (H7); ВК8; B=42; Z=12 (ГОСТ 9473-80)

Глубина резания t - величина срезаемого слоя за один проход измеряемая в направлении перпендикулярно к обрабатываемой поверхности; t=2

Подача при фрезеровании задаётся в м/мин - перемещение фрезы за одну минуту.

При черновом фрезеровании плоскости подача на зуб фрезы будет равна:

=0,11 мм/зуб (заводские нормативы)

Скорость резания. Скорость резания - это величина перемещения точки режущей кромки резца относительно поверхности резания в единицу времени, которая рассчитывается по формуле:

где V - скорость резания, м/мин

Сv - коэффициент учитывающий обрабатываемый материал и условия обработки

D – Диаметр фрезы, мм

T - Стойкость фрезы, мин

t - Глубина резания, мм

 - величина подачи, м/мин

В – ширина фрезерования, мм

Значение коэффициента Сv и показатели степени (стр 287 таб.39).

; q=0,2; x = 0.06; ; ; ; ; T=180 мин.

Общий поправочный коэффициент на скорость резания, учитывающий фактические условия резания рассчитывается по формуле:

где, Кv - общий поправочный коэффициент на скорость резания;

Кмv - коэффициент, учитывающий качество обрабатываемого материала;

Кпv - коэффициент, учитывающий состояние поверхности заготовки;

Киv - коэффициент, учитывающий материал инструмента.

=1 (режущие инстр. и режимы резания, стр.262 таб.3);

= 0.8 (режущие инстр. и режимы резания, стр.263 таб.5);

= 1 (режущие инстр. и режимы резания, стр.263 таб.6);

Следовательно, общий поправочный коэффициент на скорость резания будет равен:

Имея данные, рассчитаем скорость резания, она будет равна:

 м/мин

Определим частоту вращения шпинделя:

, об/мин

Имея все данные, произведём расчёт частот вращения:

, об/мин

По имеющимся числам оборотов станка принимаем частоту вращения: n= 63 об/мин

Сила резания. Сила резания определяется по формуле:

; Н

где Pz –сила резания, Н

Ср - коэффициент;

t - глубина резания, мм

 - подача на зуб, м/мин

В - ширина фрезерования, мм

Z - число зубьев фрезы

n - число оборотов шпинделя

Кр - поправочный коэффициент

Значения коэффициентов и показателей степеней для расчёта силы резания (таб.39, стр.289)

218; x =0.92; 0.78; 1; q=1.15; 0;

Поправочный коэффициент определяется по формуле:

;

Следовательно, общий поправочный коэффициент на силу резания будет равен:

Имея все данные, произведём расчёт силы резания:

Н;

Крутящий момент. Крутящий момент определяется по формуле:

; Н•М

где  - сила резания, Н

D – диаметр фрезы

Z - число зубьев фрезы

Имея все данные, произведём расчёт крутящего момента:

 Н•М;

Мощность резания. Эффективная мощность резания определяется по формуле:

;

где, Nэ - эффективная мощность резания, кВт

Pz - сила резания, Н

V - скорость резания, м/мин

Согласно формуле произведём расчёт:

 кВт;

Определяем режимы резания для операции 040 – Фрезерная с ЧПУ

Фреза R390-032A32-11H, материал фрезы 1025

Выбор подачи на зуб: Fz=0.1 мм/об ([8] стр. А193)

Выбор скорости резания: Vс= 70 м/мин для материала 1025 ([8] стр. А202)

Определяем частоту вращения шпинделя по формуле:

; об/мин ([8] стр. А214)

Имея все данные, найдём частоту вращения шпинделя

 об/мин;

Так как на DMU станках бесступенчатое регулирование принимаем: n = 696 об/мин

Определяем подачу стола (скорость подачи) по формуле:

 ([8] стр. А214)

Где: zn – число зубьев (5)

n – частота вращения шпинделя

fz – подача на зуб фрезы

Определяем удельную силу резания, т.е. силу резания по формуле:

Где: Кс1 – удельная сила резания Н/мм2 (1400) ([8] стр. А202)

hm – средняя толщина стружки мм (0,1) ([8] стр. А192)

mc – поправочный коэффициент (0,23) ([8] стр. А202)

Определяем мощность необходимую для резания по формуле:

Где ap – глубина резания, мм

ae – ширина обработки, мм

vf – подача стола, мм/мин

kс1 – удельная сила резания Н/мм2

η – К.П.Д.

025 Сверлильная

Для данной операции выбираем статистический метод расчетов

так как он более быстр и менее трудоемок.

Зенкер ø20Н9

1. t = 0,4 мм

2. S = 0,5 мм/зуб

3. u = 20 м/мин

4. n = 400 об/мин

6. N = 0,15 кВт

8. Ро = 235 Н

 

Нормирование операций

 

Каждый производственный процесс состоит из технологических операции.

Операция – это законченная часть технологического процесса, выполняемая одним рабочим или бригадой на одном рабочем месте.

Операция является объектом нормирования труда. Чтобы изучать трудовой процесс, проектировать его рациональную структуру, необходимо деление операций на составляющие элементы.

По технологическому признаку, согласно ГОСТу 3.1109-82, операцию делят на следующие элементы:

- установ

- позиция

- переход

- рабочий ход

- вспомогательный ход

Затраты рабочего времени, которые имеют место в производстве, весьма многообразны, поэтому основным средством для их измерения является их классификация, то есть группировка затрат рабочего времени по определенным признакам. Исходя из технического нормирования, все рабочее время исполнителя подразделяется на время работы и время перерыва.

Время работы – это время, в течение которого рабочий производит действия, направленные на осуществление трудового процесса.

Время работы включает в себя:

- подготовительно-заключительное время

- оперативное время

- время обслуживания рабочего места

Подготовительно-заключительное время – это время, затраченное на подготовку исполнителя или исполнителей к выполнению технологической операции и приведение в порядок после окончания смены или получения наряда, инструмента, приспособления, сдача их после выполнения производственного задания.

Время перерывов – это время, в течение которого рабочий не принимает участия в работе.

Определение продолжительности всех нормируемых затрат рабочего времени на выполнение заданного объема работы. Согласно ГОСТу 3.1109-82 норма времени – регламентируемое время выполнения некоторого объема работ в определенных условиях одним или несколькими исполнителями.

Структуру нормы времени можно представить:

Нормирую операцию – сверлильную

1) Определение основного машинного времени:

l – длина обработки;

l1– перебег в начале обработки;

l2 – перебег в конце обработки;

L - длина обработки, состоящая из длины обрабатываемой поверхности и перебегов инструмента в начале и конце обработки;

S – подача, мм/об;

n – число оборотов, об/мин;

Переход: Сверлить отв. ø11,9 насквозь

Т0=0.8 мин.

Переход: Зенкеровать отв. Ø12H9

Т0= 0.94 мин.

Переход: Сверлить отв. ø 19,9 насквозь

Т0= 0,95 мин.

Переход: Зенкеровать отв. Ø12H9

Т0= 0.77 мин.

Т=0.8+0.9+0,95+0,77=3,42 мин

2) Определяем вспомогательное время:

Тв= Тупр+ Туст+ Тизм= 1,4+1,2+0,2= 3 мин

Тупр - вспомогательное время на управление станком = 1,4 мин

Туст – время на установку и снятие детали 1,2 мин

Тизм – время на контрольные измерения 0,4 мин

3) Время на отдых и личные надобности 4,1% от суммы вспомогательного и основного времени.

Тотд = (3,42+3) 0,041= 0,26 мин

4) Подготовительно-заключительное время состоит из затрат времени на наладку станка, приспособления и инструмента, а так же получение инструмента и приспособления до начала работ и сдача после.

Тпз= 15 мин

5) Штучное время – норма времени необходимая для обработки одной детали складывается

Тшт= То+Тв+Тотд= 3,42+ 3+0,55= 6,99 мин

6) Штучно-калькуляционное время

Тштк=Тпз/n + Тшт= 15/800 +6,99 =7 мин

n – количество деталей в партии (шт) = 800

Нормирую операцию – фрезерную

1) Определение основного машинного времени:

l – длина обработки;

l1– перебег в начале обработки;

l2 – перебег в конце обработки;

L - длина обработки, состоящая из длины обрабатываемой поверхности и перебегов инструмента в начале и конце обработки;

S – подача, мм/мин;

n – число оборотов, об/мин;

i – число проходов;

Переход:

Т0= 0,36 мин. на 4 поверхности.

2) Определяем вспомогательное время:

Тв= Тупр+ Туст+ Тизм= 1,5+2,3+0,8= 4,6 мин

Тупр - вспомогательное время на управление станком = 1,5 мин

Туст – время на установку и снятие детали 2,3 мин

Тизм – время на контрольные измерения 0,8 мин

3) Время на отдых и личные надобности 4,1% от суммы вспомогательного и основного времени.

Тотд = (0,36+4,6) 0,041= 0,2 мин

4) Подготовительно-заключительное время состоит из затрат времени на наладку станка, приспособления и инструмента, а так же получение инструмента и приспособления до начала работ и сдача после.

Тпз= 15 мин

5) Штучное время – норма времени необходимая для обработки одной детали складывается

Тшт= То+Тв+Тотд= 0,36+4,6+0,2= 5,16 мин

6) Штучно-калькуляционное время

Тштк=Тпз/n + Тшт= 15/800 +5,16 = 5,185 мин

n – количество деталей в партии (шт) = 800.

 


Конструкторская часть

 

Конструкция приспособления

 

Технологическая оснастка имеет большое значение в производственном процессе. Она обеспечивает заданную точность и качество изготавливаемых деталей, позволяет повысить производительность и эффективность труда.

Приспособлением называют дополнительные устройства для базирования и закрепления обрабатываемой детали.

Проектируемое приспособление является специальным фрезерным приспособлением с гидравлическим приводом и предназначено для пяти координатной обработки детали “Балка верхняя” на станке DMU125P.

Ложемент имеет 2 базовых отверстия, в которые запрессовываются базовые пальцы: цилиндрический ø12Н9 и срезанный ø20Н9. Установку детали по технологической базе, предварительно обработанной на универсальном станке, производят на эти установочные пальцы.

При обработке деталь закрепляется за счет гидроцилиндров толкающего типа. В толкающем гидроцилиндре в нижнюю полость через шланг высокого давления подается масло, шток с пальцем смещается вверх, один конец прихвата смещается также вверх, а с другого края прихват при помощи шпильки с шайбой сферической прижимает деталь к ложементу.

Для ориентации приспособления на столе станка в плите запрессованы два пальца: один ø50g6 входит в центральную втулку стола, второй ø18g6-в центральный паз стола.

Данное приспособление предназначено для программной обработки наружного и внутреннего контура, карманов и ребер детали.

Также приспособление имеет 4 рым-болта для транспортирования.

Данное приспособление, благодаря быстродействующим зажимам позволяет снизить время на установку и снятие детали.

Расчет приспособления

 

Расчет силы зажима

Если расчет вести обычным способом при большом количестве работающих прихватов, получится статически неопределимая система. Поэтому расчет ведется по типу расчета заклепочных соединений.

Составляется уравнение сил, на схеме нагрузок:

(Pz+Poc·f) ·Кз=с1·F1+c2·F2

Тогда из уравнения определяется сила зажима заготовки W:

Pz – максимальная сила резания, согласно расчетам 2378 Н;

ω - угол подъема винтовой канавки концевой фрезы – ω=20°;

f - коэффициент трения на стыке между ложементом и заготовкой, f=0,15;

 - коэффициент запаса, учитывает степень затупления, колебание припуска при обработке за счет износа штампа, твердость и вязкость материала детали; =2,5;

с1 и c2 – коэффициенты, которые учитывают нагружение прихватов;

с1 – всегда равен 1;

с2 =1/2.

Последующие коэффициенты определяются по формуле:

к – порядковый номер работающего прихвата;

n – общее количество работающих прихватов в установе.


Дата добавления: 2019-09-02; просмотров: 322; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!