Общие закономерности мутагенеза. Мутагенные факторы среды. Классификация мутаций.



Мутагенез — это внесение изменений в нуклеотидную последовательность ДНК (мутаций). Различают естественный (спонтанный) и искусственный (индуцированный) мутагенез.
мутации – это качественные изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Мутации имеют следующие свойства:
- они возникают внезапно, скачкообразно;
- наследственны, т.е. передаются из поколения в поколение;
-ненаправлены - может мутировать любой локус хромосом;
-одни и те же мутации могут возникать повторно;
-мутации могут быть полезными и вредными, доминантными и рецессивными, соматическими и генеративными.

Физические мутагены: ионизирующее излучение; радиоактивный распад; ультрафиолетовое излучение; чрезмерно высокая или низкая температура.
Химические мутагены:окислители и восстановители (нитраты, нитриты, активные формы кислорода); алкилирующие агенты (например, иодацетамид); пестициды (например гербициды, фунгициды); некоторые пищевые добавки (например, ароматические углеводороды, цикламаты); продукты переработки нефти; органические растворители; лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты). К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты — ДНК или РНК).
Биологические мутагены: специфические последовательности ДНК — транспозоны; некоторые вирусы (вирус кори, краснухи, гриппа); продукты обмена веществ (продукты окисления липидов); антигены некоторых микроорганизмов.

Если мутации возникают в половых клетках, их называют генеративными мутациями, а если в других клетках организма - соматическими мутациями. Соматические мутации могут передаваться потомству при вегетативном размножении. Генеративные мутации - унаследованные мутации, они возникают в половых клетках, но не влияют на признаки данного организма, а проявляются только в следующем поколении.

Классификация мутаций от уровня нарушения генотипа , механизм возникновения и биологические последствия.

Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией . Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. (а гетероплоидия-некратного изменение числа хромосом)
При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).
На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точковых мутациях.

Гомеостаз. Механизмы поддержания

  • на уровне организма - артериальное давление (АД), базальная температура тела, объём циркулирующей крови и множество других параметров;
  • на уровне межклеточного пространства (на примере плазмы крови) - содержание кислорода, углекислоты, глюкозы, K+, Na+, Ca2+, Н+ и множество других;
  • на уровне клеток - объём клеток и их органоидов, концентрация ионов (например, K+, Na+ и Ca2+), а также макроэргических соединений (например, АТФ).

МЕХАНИЗМЫ ПОДДЕРЖАНИЯ ГОМЕОСТАЗА
Гомеостаз - это способность сохранять устойчивость и постоянство внутренней среды организма. Термин происходит от греческого "homeo", что означает "подобный", "одинаковый" и "stasis" - "равновесие", "стабильность". Термин может применяться как к отдельным организмам и растениям, так и к целым сообществам и экосистемам.
В основе гомеостаза лежит тонкий баланс внутри системы, при нарушении которого организм пытается найти резервы для восстановления. При нарушении равновесия система или отдельный организм рискует прекратить свое существование, поэтому должны уметь хорошо адаптироваться к внешним условиям среды и постоянно развиваться.
Гомеостатические системы обладают такими свойствами как нестабильность (выбор способа для приспособления к окружающей среде), тяготение к равновесию (стремление всеми силами сохранить равновесие системы) и непредсказуемость (результат может оказаться иным, чем ожидалось). Изначально термин получил широкой распространение в биологии, а позже был задействован и в других областях, таких как экология, кибернетика и другие научно-технические дисциплины.
За поддержание гомеостаза отвечают вегетативная нервная система и эндокринная система, которая контролируется гипоталамусом, а последний, в свою очередь, корой головного мозга.
   Существует два механизма гомеостаза, отрицательная обратная связь и положительная обратная связь.
Первая меняет реакцию системы на противоположную, вторая приводит к дестабилизирующему эффекту.

Пол

Пол– совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение. При рассмотрении половых отличий организмов следует различать следующие понятия:

1. Генетический пол (хромосомное определение пола) – определяется наличием в соматических клетках определенных половых хромосом

2. Первичное определение (детерминация) пола - зависит от формирования в организме половых желез (гонад): семенников или яичников

3. Вторичное определение пола – характеризуется появлением наружных половых органов и вторичных половых признаков

Генетический пол организма определяется в момент оплодотворения и обусловлен гетерогаметностью мужского пола. Образование двух типов сперматозоидов обеспечивает численное равенство полов в следующем поколении. Однако фактическое соотношение полов в популяции с возрастом изменяется. Поэтому предлагается выделять первичное, вторичное и третичное соотношение полов.

Общая схема первичной детерминации пола выглядит следующим образом: на ранних этапах эмбрионального развития возникает конкретный сигнал, включающий некий ген. Этот ген, в свою очередь, активизирует развитие и дифференцировку гонад в определенном направлении, а функционирование последних определяет развитие половых признаков.
Биологической основой генетического механизма определения пола является бисексуальность эмбриональных гонад (бисексуальность в данном случае означает равновероятность развития первичных гонад в семенники или яичники). Опыты по удалению зачатков гонад у эмбрионов позволили сделать вывод: «специализация развивающихся гонад в семенники или яичники определяет последующую половую дифференцировку эмбриона». А выявление людей с единственной Х-хромосомой, развивающихся по женскому типу, а также людей с наборами половых хромосом ХХY, развивающихся по мужскому типу, позволили сделать вывод, что Y-хромосома несет генетическую информацию, необходимую для формирования пола.
Исследования генетиков позволили локализовать и определить структуру гена, определяющего развитие зачатков гонад в семенники. Этот ген получил название SRY (Sex determining Region Y gene), кодирует белок из 204 аминокислот и расположен в области Y, р1. Отсутствие в клетках эмбриона Y-хромосомы приводит к развитию из зачатков гонад яичников.
Половая система организмов включает не только семенники и яичники, но и другие органы (женские – фаллопиевые трубы, матка, влагалище и мужские – придаток семенников, семявыводящие протоки, семенные пузырьки). Эти органы развиваются из протоков зародышевой почки эмбриона. Мюллеров проток является предшественником труб, матки и верхней части влагалища, Вольфов проток – органов мужской половой системы. Развитие этих протоков в окончательные органы контролируется антимюллеровым гормоном (образуется клетками Сертоли семенников). Ген этого гормона локализован в аутосоме 19, р13 и проявляет свое действие только при наличии Y-хромосомы. Поэтому у мужских эмбрионов Мюллеров проток редуцируется, а из Вольфова протока развиваются органы мужской половой системы.
Обязательным условием нормального развития половой системы является наличие функционально активных рецепторов для половых гормонов. Мутации генов, которые кодируют эти рецепторы, приводят к тем же последствиям, как и отсутствие соответствующего гормона в организме. Например, мутации гена рецепторов андрогенов (локализован – Х-хромосома, р 11-12) приводят к возникновению синдрома тестикулярной феминизации (см. ниже).

Подводя итог вышесказанному можно сделать вывод, что на формирование пола и нормальное развитие половой системы оказывают влияние:

1. Наличие Y-хромосомы в клетках эмбриона
2. Образование гормонов (мужских и женских половых, антимюллерова), которые влияют на формирование половых органов
3. Наличие функционально активных рецепторов, через которые гормоны реализу-ют свое действие.

На формирование половых признаков оказывают влияние гены, локализованные в различных хромосомах (аутосомах и половых), поэтому знания функциональной активности этих генов позволяют объяснить встречающиеся несоответствия генетического и фенотипического пола, а также возникновения у человека гермафродитизма. Основными причинами этих нарушений являются либо хромосомные мутации (делеция или транслокация участка Y-хромосомы с геном SRY) либо мутации генов, кодирующих гормоны и рецепторы гормонов.

Синдром тестикулярной феминизации (Х-сцепленное рецессивное наследование) - выявляют у пациенток с мужским кариотипом (46, XY), но женским фенотипом. Является одной из форм мужского гермафродитизма. При рождении эта аномалия никак не проявляется, больные выглядят как обычные девочки. С наступлением половой зрелости отмечается аменорея. Особи имеют наружные половые женские органы, но наблюдается недоразвитие репродуктивных органов (фаллопиевых труб, матки, влагалища). Ключ к постановке диагноза – обнаружение в паховом канале семенников. Семенники образуют тестостерон, но гормон не может реализовать свое действие в результате мутации гена рецептора антрогенов.

 


Дата добавления: 2019-07-17; просмотров: 1193; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!