Роль средовых факторов в развитии признаков человека



Ген-функциональная единица наследственности. Особенности структурной организации генов. Функциональные группы генов

Ген представляет собой последовательность нуклеотидов ДНК размером от нескольких сотен до миллиона пар нуклеотидов, в которых закодирована генетическая информация о первичной структуре белка (число и последовательность аминокислот). Три подряд расположенных нуклеотида представляют собой кодон, который и определяет, какая аминокислота будет располагаться в данной позиции в белке.

Доказательствами хромосомной локализации генов явились: открытие генов, наследующихся сцеплено с полом (локализация генов в половых хромосомах, X или Y); сцепленное наследование группы признаков. Было показано наличие определенного числа групп сцепления генов, соответственно гаплоидному числу хромосом конкретного биологического вида. Кроме того, были получены генетические и цитологические доказательства кроссинговера - обмена генами между гомологичными хромосомами, приводящего к рекомбинации генов. Величина генетической рекомбинации (процент кроссинговера-перекреста) отражает расстояние между генами одной группы сцепления: чем дальше отстоят друг от друга гены, тем больше процент кроссинговера.
Таким образом, было доказано, что гены в хромосоме располагаются в линейном порядке, и каждый ген имеет свое определенное местоположение - локус.
Классификация генов
 - По месту локализации генов в структурах клетки различают расположенные в хромосомах ядра ядерные гены и цитоплазматические гены, локализация которых связана с хлоропластами и митохондриями.
 - По функциональному значению различают структурные гены, характеризующиеся уникальными последовательностями нуклеотидов, кодирующих свои белковые продукты, которые можно идентифицировать с помощью мутаций, нарушающих функцию белка, и регуляторные гены -- последовательности нуклеотидов, не кодирующие специфические белки, а осуществляющие регуляцию действия гена (ингибирование, повышение активности и др.).
 - По влиянию на физиологические процессы в клетке различают летальные, условно летальные, супервитальные гены, гены-мутаторы, гены-антимутаторы и др.

Структурная организация хроматина.

 

Хроматин (хроматиновая нить) представляет собой интерфазное состояние хромосомы и отличается от последних степенью спирализации и, соответственно, длиной. Поэтому число хроматиновых нитей в соматических клетках должно соответствовать диплоидному набору хромосом. Хроматин - это функционально активное состояние хромосом!
Хроматин, также как и хромосома, неоднороден по своей структуре. Различают два типа хроматина: эухроматин и гетерохроматин, которые морфологически и функционально отличаются друг от друга. Эухроматин - это деспирализованные и функционально активные участки хроматина, в этих участках интенсивно происходят процессы транскрипции. Гетерохроматин - более спирализованные и функционально неактивные участки хроматина. Эти участки содержат незначительное количество структурных генов и, по существу, представляют собой участки хроматина временно или постоянно выключенные из процессов регуляции клеточной активности.
В разных типах тканей и на различных этапах индивидуального развития чередование и расположение участков эухроматина и гетерохроматина определенной хроматиновой нити могут существенно отличаться. Возможно это является одним из механизмов клеточной дифференцировки.
Митотическая суперкомпактизация хроматина делает возможным изучение внешнего вида хромосом с помощью световой микроскопии. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.
В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые —очень небольшие, форму которых трудно определить. При рутинных методах окраски хромосом они различаются по форме и соотносительным размерам. При использовании методик дифференциальной окраски выявляется неодинаковая флуоресценция или распределение красителя по длине хромосомы, строго специфические для каждой отдельной хромосомы и ее гомолога.
Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.
Нарушения хромосомного уровня организации наследственного материала связаны с изменениями структуры отдельной хромосомы в результате воздействия мутагенного фактора. При этом могут возникать как внутрихромосомные (делеция, инверсия), так и межхромосомные перестройки (транслокация, транспозиция)

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток
Кариотип человека (от греч. - орех, ядро и - отпечаток, тип) — диплоидный хромосомный набор человека, представляющий собой совокупность морфологически обособленных хромосом, внесённых родителями при оплодотворении.
Хромосомы набора генетически неравноценны: каждая хромосома содержит группу разных генов. Все хромосомы в кариотипе человека делятся на аутосомы и половые хромосомы. В кариотипе человека 44 аутосомы (двойной набор) - 22 пары гомологичных хромосом и одна пара половых хромосом — XX у женщин и ХУ у мужчин. По положению центромеры (первичной перетяжки) все хромосомы в кариотипе человека делятся на метацентрические (расположение центромеры в середине длины хромосомы), субметацентрические (ближе к одному концу), акроцентрические (на теломерном конце).

Гаметогенез

Гаметогенез- образование зрелых половых клеток. Выделяют:

-сперматогенез- образование мужских половых клеток
-овогенез - образование женских половых клеток
-гаметы - это высокоспециализированные клетки, которые выполняют функцию генеративную

Сперматозоид состоит из трех частей: головки, шейки и жгутика. на передней части головки располагается акросома с хеморецепторами, там же имеются вакуоли с ферментами. внутри головки находится ядро и центриоль. в шейке находится множество митохондрий.

Яйцеклетка крупная неподвижная, с большим количеством зернистой цитоплазмы. имеет две оболочки - белковую и желточную.

В гаметогенезе выделяют три стадии. первая - стадия размножения, вторая - стадия роста, третья - стадия созревания. в сперматогенезе четвертая - стадия формирования.

Сперматогенез у человека начинается после полового созревания. весь этот процесс занимает примерно70 суток. в стадию размножения делятся клетки зачаткового эпителия и образуются многочисленные сперматогонии. деление в данном случае - митоз. затем начинается стадия роста. соответствует первой интерфазе первого деления мейоза. меняется характеристика клетки (2н4с) - образуются сперматоциты первого порядка. затем - стадия созревания. соответствует двум делениям мейоза. получаются гаплоидные клетки - сперматоциты второго порядка (н2с). далее - второе деление. получаются сперматиды (нс). на стадии формирования идет дифференцировка. у большинства мужчин гаметогенез не прекращается до смерти. изменяется только количество сперматозоидов.

Овогенез начинается в эмбриональном периоде жизни. идет стадия размножения. первичные половые клетки делятся путем митоза и образуются овогонии (2н2с). затем начинается стадия роста. появляются овоциты первого порядка(2н4с). также начинается стадия созревания. овоцит первого порядка начинает мейоз, но первое деление прерывается на стадии профазы-1 до полового созревания. после полового созревания первое деление продолжается. заканчивается и появляется овоцит второго порядка и мелкая клетка (редукционное тельце первое) (н2с). затем идет овуляция. начинается второе деление (в маточных трубах). оно идет до стадии метафазы-2. овоцит второго порядка имеет только одну центриоль. вторая центриоль появляется от сперматозоида. после этого второе деление заканчивается. выделяется второе редукционное тельце. редукционное тельце забирает с собой лишние хромосомные наборы. обычно их получается три. завершается в 45-49.

Различия сперматогенеза и овогенеза: разное число стадий, число зрелых половых клеток, образующихся на одну исходную, продолжительность процесса, начало процесса, непрерывность процесса (сперматогенез непрерывен, овогенез имеет две паузы), производительность (сперматозоидов очень много, не менее 500 млрд., а яйцеклеток 300-400).

нарушение гаметогенеза
Гаметогенез протекает в половых железах, которые являются гормонозависимыми органами. необходимы половые гормоны и два гормона гипофиза - фолликулостимулирующий и лютеинизирующий. первый у женщин способствует развитию овоцитов и синтезу эстрогенов. у мужчин способствует созреванию сперматозоидов. второй у женщин способствует развитию желтого тела после овуляции и синтезу гестогенов. у мужчин стимулируют выработку тестостеронов. нарушение гаметогенеза связаны с нарушением гормонального статуса организма (опухоли, эндокринные заболевания), при хроническом стрессе, привычных интоксикации.

Роль средовых факторов в развитии признаков человека

 

Фенотип индивидуума является результатом реализации его наследственной информации в определенных условиях среды. На формирование и степень выраженности большинства признаков человека могут оказывать влияние различные средовые факторы (абиотические, биотические, антропогенные). В одних случаях они способствуют изменению нормальных признаков человека (проявляется модификационная изменчивость – изменение признака в пределах нормы реакции), в других – факторы среды способствуют проявлению патологических генов, т.е. приводят к возникновению различных заболеваний, в том числе и наследственных. При изучении роли среды на функцию и структуру генотипа следует выделить два основных эффекта:

- изменение проявления действия генов при влиянии на организм определенных факторов среды
- изменение генетического материала особей

Актуальность изучения реакций человеческого организма на различные агенты среды привела к возникновению нового направления в генетике – экологической генетике (экогенетике). Одной из задач экогенетики – объяснение различной чувствительности людей к действию потенциально опасных внешних агентов.
Основная гипотеза, объясняющая индивидуальные реакции организма, заключается в том, что каждый организм (за исключением монозиготных близнецов) имеет свой уникальный набор генов, который определяет не только индивидуальность его внешних признаков, но и индивидуальные биохимические, иммунологические, морфологические и другие особенности. Генетический полиморфизм (наличие в популяции особей с различными генотипами) является основой индивидуальных реакций особей в популяции на действие конкретного фактора среды.
Какие причины приводят к генетическому полиморфизму? Ранее подчеркивалось, что генотип организма целиком зависит от генетического разнообразия генофонда популяции, в которой обитает индивид, а также что, любой ген в популяции может быть представлен разными аллелями: минимально двумя (доминантным и рецессивным), максимально – без ограничений (множественные аллели). Последние исследования генетиков позволили сделать вывод, что около 25% всех генов в популяции представлены множественными аллелями, а каждый аллель отвечает за индивидуальность какого-либо белка (структурного белка, фермента, рецептора, иммуноглобулина и т.д.). Разнообразие генов в генофонде создает предпосылки к возникновению индивидуальных генотипов особей. Благодаря половому размножению обеспечивается не только передача генов потомкам, но и образование их новых комбинаций. Поэтому механизмы комбинативной изменчивости являются одной из причин генетического полиморфизма особей. Второй причиной полиморфизма является постоянное возникновение и передача потомкам новых генных мутаций. Но передаваться могут только мутации, возникающие в половых клетках какого-то из родителей. Мутации, возникающие в соматических клетках, остаются в пределах одного организма. Последствия генеративных и соматических генных мутаций оказываются различными: генеративные – накапливаются в генофонде популяции, соматические - приводят к возникновению клеточного мозаицизма.


Дата добавления: 2019-07-17; просмотров: 313; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!