Соматосенсорный анализатор в онтогенезе 6 страница



Белое вещество мозжечка слагается из различного рода нервных волокон. Одни из них связывают извилины и дольки, другие идут от коры к внутренним ядрам мозжечка, а третьи соединяют мозжечок с соседними отделами мозга. Последние волокна образуют нижние, средние и верхние пары ножек. В составе нижних ножек к мозжечку подходят волокна от продолговатого мозга и олив. Они заканчивают-ся в коре червя и полушариях. Волокна средних ножек идут к мосту. Волокна верхних ножек направляются к крыше среднего мозга, про-ходят в обоих направлениях, связывают мозжечок с красным ядром и таламусом, а также со спинным мозгом.

У новорожденного масса мозжечка 20 г, что составляет 5,4 % массы тела. К 5 месяцам жизни она увеличивается в 3 раза, к 9 месяцам — в 4 раза. В это время наиболее интенсивно развиваются полушария мозжечка. Усиленный рост мозжечка на первом году жизни определя-ется формированием в течение этого периода дифференцированных и координированных движений. В дальнейшем темпы его роста сни-жаются. К 15 годам мозжечок достигает размеров взрослого человека.

Мозжечок обеспечивает координацию движений. При поражени-ях его развиваются разнообразные нарушения двигательной активно-сти и мышечного тонуса, а также вегетативные расстройства. Моз-жечковая недостаточность связана с неспособностью поддерживать позу. Например, при смещении пассивно висящей конечности она не возвращается в исходное положение, а раскачивается подобно маят-нику. Для мозжечковых повреждений характерны тремор, нарушение величины, скорости и направления движений, что приводит к утрате плавности и стабильности двигательных реакций. Целенаправленные движения (попытка взять предмет) выполняются порывисто, рывка-ми, промахами мимо цели. Нарушение двигательной координации при поражениях мозжечка объясняется его тесными связями со ство-лом мозга, а также с таламусом и сенсомоторной областью коры боль-ших полушарий. Таким образом, мозжечок получает разнообразную афферентную информацию от различных компонентов двигательно-го аппарата, обрабатывает ее и передает корригирующие влияния к нейронам ствола мозга и спинальным центрам моторного контроля. Кроме того, благодаря многочисленным синаптическим связям с ре-тикулярной формацией мозжечок играет важную роль в регуляции вегетативных функций.

Между продолговатым мозгом, мостом и мозжечком есть общая полость, получившая название «четвертый желудочек головного моз-га», который напоминает палатку и имеет дно и крышу. Дно желудоч-ка ромбовидной формы, как бы вдавлено в заднюю поверхность про-долговатого мозга и моста, поэтому его еще называют ромбовидной ямкой. В заднюю часть ромбовидной ямки открывается центральный канал спинного мозга, а в передневерхнюю — третий желудочек го-ловного мозга. Посредством трех отверстий четвертый желудочек со-общается с подпаутинным пространством головного мозга, благодаря чему спинномозговая жидкость поступает из мозговых желудочков в межоболочечные пространства.

Средний мозг состоит из ножек мозга и крыши мозга. Они разде-лены сильвиевым водопроводом мозга, который соединяет третий и четвертый желудочки головного моза. Ножки мозга состоят из осно-вания и покрышки, между которыми располагаются пигментирован-ные клетки черной субстанции. Черная субстанция участвует в слож-ной координации движений. Основание ножек образует пирамидный путь. В покрышке ножек лежат ядра блокового и глазодвигательного нервов (III и IV пара черепных нервов). Также в ней располагается красное ядро, в котором заканчиваются верхние ножки мозжечка. В них идет восходящий путь к зрительному бугру и нисходящий — красноядерно-спинномозговой. Красное ядро отвечает за поддержа-ние тонуса мускулатуры туловища и конечностей.

Четверохолмие, или крыша мозга, составляет заднюю часть сред-него мозга. Перпендикулярными друг другу бороздами оно делится на верхние и нижние холмики. Верхнее двухолмие заключает в себе цен-тры ориентировочных рефлексов на зрительные раздражения. По-средством отходящих вперед ручек холмики соединяются с латераль-ными коленчатыми телами промежуточного мозга. По этим ручкам идут волокна зрительного нерва. Нижнее двухолмие служит центром ориентировочных рефлексов на слуховые раздражения. От холмиков к медиальным коленчатым телам идут нижние ручки, по которым проходят волокна слухового нерва. Ядра четверохолмия играют важ-нейшую роль в раннем онтогенезе, обеспечивая первичные формы сенсорного внимания.

В среднем мозге замыкается ряд рефлексов. Нейроны бугров чет-верохолмия отвечают за ориентировочные зрительные и слуховые рефлексы. Ядра четверохолмия участвуют в осуществлении стороже-вого рефлекса, что выражается в усилении тонуса сгибателей. Черная субстанция обеспечивает сложную координацию движений. В ней находятся содержащие дофамин нейроны, регулирующие эмоцио-нальное поведение. Повреждение черной субстанции приводит к на-рушению тонких движений пальцев рук, развитию тремора (болезнь Паркинсона). Красное ядро отвечает за тонус мышц-сгибателей.

Промежуточный мозг

В промежуточном мозге различают парные зрительные бугры (та-ламус), латеральные и медиальные коленчатые тела, подбугорную (гипоталамус) и надбугорную (эпиталамус) области.

Зрительный бугор (таламус) представляет собой крупное тело оваль-ной формы. Он состоит из серого вещества, группирующегося в ядра. Все ядра делятся на специфические и неспецифические. Специфиче-ские ядра получают информацию от определенных видов рецепторов и посылают их в строго определенные зоны коры. Ядра, переклю-чающие информацию на центральные поля анализаторов, относят к проекционным, или релейным. Ядра, передающие информацию на ассоциативные области, являются ассоциативными. Неспецифи-ческие ядра представлены ретикулярной формацией. Они располага-ются вокруг специфических, диффузно влияют на кору и подкорковые ядра и могут вызывать как возбуждающий, так и тормозной эффект. Эти ядра не выполняют высших интегративных функций, но участвуют в регуляции афферентных влияний. К моменту рождения большая часть ядер зрительных бугров хорошо развита. После рождения их размеры увеличиваются за счет роста нервных клеток и развития нервных во-локон.

Все сенсорные сигналы, за исключением обонятельных, достига-ют коры больших полушарий только через таламокортикальные про-екции. Таламус представляет собой ворота, через которые в кору по-ступает информация о состоянии нашего тела и окружающем мире. Афферентные сигналы на пути к коре мозга переключаются на ней-ронах таламуса, что позволяет обеспечить передачу в кору мозга наи-более важной информации. Система неспецифических ядер таламуса контролирует ритмическую активность коры больших полушарий и выполняет функции внутриталамической интегрирующей системы. Таламус является высшим центром болевой чувствительности. По-вреждение неспецифических ядер таламуса приводит к нарушению сознания. Это свидетельствует о том, что импульсация, поступающая по неспецифической восходящей системе таламуса, поддерживает уровень возбудимости корковых нейронов, необходимый для сохра-нения сознания. Кроме того, таламус является надсегментарным цен-тром рефлекторной деятельности.

Латеральное коленчатое тело располагается кнаружи от корешка зрительного пути.

Медиальное коленчатое тело лежит на уровне поперечной борозды четверохолмия. Волокна нервных клеток коленчатых тел в составе зри-тельных и слуховых путей направляются к коре больших полушарий.

Гипоталамус хорошо заметен на основании головного мозга. В задней его области располагаются два сосцевидных тела. Волокна этих тел образуют сосково-бугорный путь, по которому импульсы идут к передним ядрам зрительного бугра. Сосцевидные тела, как и пе-редние ядра зрительных бугров, относят к лимбической системе, кото-рая отвечает за организацию поведенческих реакций. Спереди от сос-цевидных тел лежит серый бугор. Суживаясь, он переходит в воронку, проникающую в ямку турецкого седла через его диафрагму. На ворон-ке подвешен гипофиз. Серый бугор является центром автономной нервной системы, которая влияет на сохранение гомеостаза организ-ма и на его приспособление к условиям внешней среды. Впереди се-рого бугра зрительные нервы образуют перекрест (хиазму), после ко-торого получают название зрительных путей. Над перекрестом лежит супраоптическое ядро. Его клетки вырабатывают нейросекреты, про-никающие в заднюю долю гипофиза. Этими веществами являются антидиуретический гормон, регулирующий водный метаболизм, и ок-ситоцин, влияющий на деятельность матки. По-иному, т.е. нейрогу-моральным путем, через кровь, осуществляется связь гипоталамуса с передней долей гипофиза, вырабатывающей такие гормоны, как ад-ренокортикотропный, фолликулостимулирующий и лютеинизирую-щий, тиреотропный, гормон роста. Таким образом, здесь образуется гипоталамо-гипофизарная система, где объединяются два уровня регу-ляции функций организма человека — нервная и гуморальная. Диф-ференцировка ядер гипоталамуса к моменту рождения не завершена и протекает в онтогенезе неравномерно. Развитие ядер заканчивается в период полового созревания.

В функциональном отношении ядра гипоталамуса неоднородны. Латеральная и дорсальная группы ядер повышают тонус симпатиче-ской нервной системы, средние ядра (серый бугор) — снижают его. В гипоталамусе располагаются центр сна и центр пробуждения, он участвует в процессе чередования сна и бодрствования. Гипоталамус играет важную роль в терморегуляции. Раздражение задних ядер приво-дит к гипертермии в результате повышения теплопродукции. В области средних и боковых ядер располагаются центры насыщения и голода, которые активируются в результате изменения химического состава протекающей крови. Дорсолатерально от супраоптического ядра на-ходится центр жажды. Активация его приводит к увеличению потребле-ния воды (полидипсия), а разрушение сопровождается отказом от воды (адипсия). В гипоталамусе расположены центры, связанные с регуляци-ей полового поведения, названные центрами удовольствия. Они явля-ются компонентом нейронной системы, участвующей в регуляции эмоциональной сферы полового поведения. В результате связей гипо-таламуса с гипофизом образуется гипоталамо-гипофизарная система.

Надбугорная область (эпиталамус) связана с обонятельной систе-мой. Эпиталамус участвует в образовании стенок третьего желудочка головного мозга и состоит из мозговых полосок, сзади расширяющихся в поводковые треугольники. От последних отходят поводки (белые тяжи), которые соединяют эпиталамус с эпифизом. В треугольниках лежат поводковые ядра, отдающие нисходящие волокна к ядрам сред-него мозга. Промежуточный мозг у новорожденного развит относи-тельно хорошо.

Внутри промежуточного мозга находится третий желудочек голов-ного мозга, имеющий вид вертикальной щели, ограниченной с боков медиальными поверхностями зрительных бугров, снизу гипоталаму-сом, спереди — столбами свода, сзади — эпиталамусом, сверху — сво-дом. Между зрительными буграми расположены межжелудочковые отверстия, которые соединяют полость третьего желудочка с боковы-ми желудочками больших полушарий.

Развитие структур промежуточного мозга состоит в увеличении их взаимосвязей с другими мозговыми образованиями, что создает усло-вия для совершенствования координационной деятельности его раз-личных отделов. В развитии промежуточного мозга существенная роль принадлежит нисходящим влияниям коры больших полушарий.

 

16. Возрастные особенности строения и функции конечного мозга.

Головной мозг находится в полости черепа. Масса его составляет в среднем 1245 г у женщин и 1394 г у мужчин, но может колебаться от 1100 до 2000 г. У новорожденного головной мозг относительно боль-шой: 390 г у мальчиков и 355 г у девочек, что составляет 12—13 % массы (у взрослых — 2,5 %). К концу первого года жизни масса мозга удваи-вается, к 3-4 годам утраивается. До 4 лет головной мозг ребенка рас-тет равномерно в высоту, длину и ширину, в дальнейшем преобладает рост в высоту. После 7 лет мозг растет медленно и достигает максималь-ной массы к 20-29 годам. После 55—60 лет масса мозга несколько умень-шается. В головном мозге выделяют три основных отдела — задний, средний и передний мозг. Задний мозг включает продолговатый мозг, мост и мозжечок, средний — ножки мозга, четверохолмие и ряд ядер, передний — промежуточный мозги большие полушария

Конечный мозг представлен двумя полушариями. В состав каждого полушария входят плащ, или мантия, обонятельный мозг и базальные ганглии. В глубине продольной щели мозга оба полушария соедине-ны между собой толстой горизонтальной пластинкой — мозолистым телом, которое состоит из нервных волокон, идущих поперечно из одного полушария в другое. Мозолистое тело у новорожденного тон-кое и короткое. Оно растет одновременно с развитием полушарий большого мозга, располагаясь над третьим желудочком. С возрастом толщина ствола мозолистого тела увеличивается до 1 см, а его валика до 2 см.

В процессе онтогенеза головной мозг развивается неравномерно. В пренатальном периоде прежде всего формируются отделы, которые отвечают за функционирование жизненно важных органов (продол-говатый мозг, ядра среднего и промежуточного мозга). К концу внут-риутробного периода развиваются первичные проекционные поля. К моменту рождения структуры мозга позволяют осуществлять жиз-ненно важные функции (дыхание, жевание, глотание) и простейшие реакции на внешние раздражители. Таким образом, осуществляется принцип минимального и достаточного обеспечения функций. В пост-натальном периоде продолжается интенсивное развитие мозга, в осо-бенности коры больших полушарий.

В развитии коры выделяют два процесса — рост коры и дифферен-цировку ее нейронных элементов. Наибольшее увеличение толщины коры происходит на первом году жизни, а затем постепенно замедля-ется. Проекционные поля прекращают расти к 3 годам, а ассоциатив-ные — в 7 лет. Кора растет за счет разрежения нейронов, т.е. увеличения межнейронального пространства, роста дендритов и аксонов и разви-тия нейроглии.

В раннем постнатальном периоде начинается дифференцировка нейронов коры, которая продолжается довольно длительный период. Первыми развиваются нейроны нижних слоев, а затем верхних. В бо-лее ранние сроки созревают веретенообразные клетки, переключаю-щие афферентную импульсацию из подкорковых структур к пира-мидным нейронам. В более поздние сроки развиваются звездчатые и корзинчатые клетки, которые обеспечивают взаимодействие нейро-нов и циркуляцию возбуждения внутри коры. Начавшаяся в первые месяцы жизни дифференцировка вставочных нейронов заканчивается в 3-6 лет. Полное развитие вставочных нейронов в ассоциативных об-ластях отмечается в 14-летнем возрасте.

О формировании нейронной организации коры говорит наличие хорошо развитых аксонов и дендритов. Аксоны, проводящие афферентные импульсы, в течение первых 3 месяцев покрываются миели-новой оболочкой. Это способствует ускорению поступления информа-ции к нейронам проекционной коры. Дендриты, которые обеспечивают взаимодействие нейронов различных слоев, в проекционной коре со-зревают в первые недели жизни, достигая к 6 месяцам третьего слоя. Дендриты, объединяющие нейроны в пределах одного слоя, развива-ются позже.

В развитии коры в онтогенезе выделяют следующие этапы. Пер-вый год характеризуется увеличением размеров нервных клеток, диф-ференцировкой вставочных нейронов, увеличением аксонов и денд-ритов. К 3 годам образуются нейронные группировки, включающие различные типы нейронов. В 5-6 лет продолжается дифференциров-ка и специализация нервных клеток и усиливается межнейрональная интеграция в определенных областях коры. К 9-10 годам усложняется структура интернейронов и пирамид, формируются горизонтальные группировки, объединяющие вертикальные колонки. В 12-14 лет высо-кой степени специализации достигают пирамидные нейроны и высо-кой степени дифференциации — интернейроны. Удельный вес волокон становится больше объема клеточных элементов. К 18 годам органи-зация коры достигает уровня взрослого человека.

Основная закономерность в развитии мозга заключается в том, что эволюционно более древние структуры созревают раньше: от спинно-го мозга и ствола, которые обеспечивают жизненно важные функции, к коре больших полушарий. По горизонтали развитие идет следующим образом. Первыми формируются проекционные отделы, обеспечи-вающие контакты с внешним миром с момента рождения. Затем со-зревают ассоциативные области, ответственные за психическую дея-тельность.

Для развития каждого последующего уровня необходимо полное созревание предыдущего. Этот принцип развития мозга в онтогенезе JI.С. Выготский назвал «снизу вверх». Например, для развития проек-ционной коры необходимо формирование структур, через которые поступает сенсорная информация. В свою очередь, формирование первичных проекционных корковых зон необходимо для развития ассоциативных корковых зон. Позже созревающие структуры влияют на уже существующие. Так, только после созревания проекционных зон коры ядра таламуса приобретают полную специализацию. Пол-ностью сформированная кора управляет подчиненными ей структу-рами более низкого уровня (это принцип «сверху вниз»).

 

17. Зрительная, сенсорная система, строение, развитие. Возрастные изменения оптической системы глаза, аккомодации, остроты зрения, пространственного зрения, световой чувствительности и цветового зрения.

Периферическим отделом зрительного анализатора является глаз-ное яблоко. Удетей оно имеет шаровидную форму, у взрослых немно-го вытянутую в длину. Глазное яблоко у новорожденного большое: диаметр — 17,5 мм, масса — 2,3 г. Зрительная ось проходит латераль-нее, чем у взрослого. Растет глазное яблоко быстрее всего на первом году жизни, к 5 годам масса его увеличивается на 70 %, к 20 годам — в 3 раза. Глазное яблоко имеет ядро и три оболочки: наружную — фиб-розную, среднюю — сосудистую и внутреннюю — сетчатку.

Ядро состоит из стекловидного тела, хрусталика и водянистой влаги. Эти образования также являются преломляющими средами глаза.

Хрусталик представляет собой плотное тело в виде двояковыпук-лой линзы. Край хрусталика называется экватором. Хрусталик не име-ет сосудов и нервов, прозрачный и покрыт сверху капсулой. Спереди он соприкасается с радужкой, а сзади вдается в стекловидное тело. Укрепляется хрусталик ресничным пояском, при сокращении или расслаблении ресничного тела натяжение пояска изменяется и хру-сталик изменяет свою форму. Это способствует приспособлению гла-за к ясному видению и называется аккомодацией.

Стекловидное тело заполняет пространство между сетчаткой и хру-сталиком. Оно плотно прилегает к сетчатке и фиксирует хрусталик, состоит из прозрачного студенистого межклеточного вещества и не имеет сосудов.

Водянистая влага выделяется из кровеносных сосудов ресничных отростков и радужки. Она заполняет переднюю камеру глаза, распо-ложенную между роговицей и радужкой, и заднюю камеру глаза, на-ходящуюся между радужкой и хрусталиком. Камеры сообщаются че-рез зрачок. Отток влаги осуществляется через венозный синус.

Фиброзная оболочка сзади (4/5) представлена белочной оболочкой (склерой), а спереди бессосудистой, прозрачной, сильно изогнутой роговицей.

Роговица состоит из плотной соединительной ткани. Спереди по-крыта многослойным плоским неороговевающим эпителием, а сзади — однослойным эндотелием. Кровеносные сосуды в роговице отсутст-вуют. Роговица у новорожденного относительно толстая, кривизна ее в течение жизни почти не меняется.

Белочная оболочка, или склера, также образована плотной соеди-нительной тканью. Но в отличие от роговицы она непрозрачна, так как в ней содержится много эластичных и коллагеновых волокон. Границей между склерой и роговицей служит ободок—лимброговицы. Кроме того, на границе проходит венозный синус, по которому из глаза оттекает венозная кровь и лимфа. Эпителий роговицы здесь перехо-дит в конъюнктиву. В задней части склеры в месте выхода зрительного нерва образуется решетчатая пластинка с многочисленными отвер-стиями. Здесь склера наиболее массивна и переходит в соединитель-нотканную оболочку зрительного нерва. Кровеносные сосуды проходят через склеру к сосудистой оболочке. К белочной оболочке прикреп-ляются четыре прямые мышцы глаза.


Дата добавления: 2019-07-17; просмотров: 262; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!