Достаточное услоие.Первый признак.



Дополним, что точки, где производная равна нулю, называются стационарными ; а точки, где производная не существует называются критическими.

Итак, если точка х0 есть стационарная точка для функции f(x) или если в этой точке не существует для неё двусторонней конечной производной, то точка х0 представляется, так сказать лишь “подозрительной” по экстремуму и подлежит дальнейшему испытанию.

Это испытание состоит а проверке достаточных условий для существования экстремума, которые мы сейчас утановим.

Предположим, что в некоторой окрестности (х- ,х+ ) точки х0 (по крайней мере, для х=х0) существует конечная производная и как слева от х0 , так и справа от х0 (в отдельности) сохраняет определенный знак. Тогда возможны следующие три случая:

I f’(x)>0 при х<х0 и f’(x)<0 при х>х0, т. е. производная f’(x) при переходе через точку х0 меняет знак плюс на минус. В этом случае, в промежутке [х0- ,х0] функция f(x) возрастает, a в промежутке [х00+ ] убывает, так что значение f(x) будет наибольшим в промежутке [х0- ,х0+ ] , т. е. в точке х0 функция имеет собственный максимум.

II f’(x)<0 при х<х0 и f’(x)>0 при х>х0 , т. е. производная f’(x) при переходе через точку х0 меняет знак минус на плюс. В этом случае аналогично убеждаемся, что в точке х0 функция имеет собственный минимум.

III f’(x)>0 как при х<х0 так и при х>х0 либо же f’(x) и слева и справа от х0 , т. е. при переходе через х0 , не меняет знака. Тогда функция либо всё время возрастает, либо всё время убывает; в любой юлизости от х0 с одной стороны найдутся точки х, в которых f(x)<f(x0), а с другой – точки х, в которых f(x)>f(x0) так что в точке х0 никакого экстремума нет.

Итак, мы получаем правило для испытания “подозрительного” значения х0 : подставляя в производную f’(x) сначала х<х0 , а затем х>х0, устанавливаем знак производной вблизи от точки х0 слева и справа от неё; если при этом производная f’(x) меняет знак плюс на минус , то налицо максимум, если меняет знак с минуса на плюс, то – минимум ; если же знака не меняет, то экстремума вовсе нет.

Это правило полностью решает вопрос в том случае, когда в промежутке (а,b), как это обычно бывает, всего лишь конечное число стационарных точек или точек, где отсутствует конечная производная:

a<х12<… <хkk+1<… <хn<b           (3.1)

именно ,тогда прежде всего, в любом промежутке (а,х1), (х12), … ,(хkk+1), … ,(хn,b) существует конечная производная f’(x) и, кроме того, в каждом таком промежутке f’(x) сохраняет постоянный знак.Действинельно, если бы f’(x) меняла знак, например, в промежутке (хkk+1) , то по теореме Дарбу, она обращалась бы в нуль в некоторой точке между хk и хk+1, что невозможно, поскольку все корни производной уже содержатся в ряду точек (3.1).

Последнее замечание бывает полезно в некоторах случаях на практике: знак производной f’(x) во всем промежутке (хkk+1) определяется , если вычислить значение (или даже только установить знак) её в одной какой-либо точке этого промежутка.

 

Достаточное условие. Второй признак.

Нередко более удобным на практике оказывается другой признак существования экстремума, основанный на выяснении знака второй производной в стационарной точке.

Справедлива следующая теорема.

Теорема 3.1:Если х0 есть стационарная точка функции f(x) и f’’(x)<0, то в точке х0 функция иммет максимум,а если f’’(x)>0 , то функция имеет в точке х0 минимум.

Доказательство: По определению второй производной

               (f’(x)-f’(x0)

f’’(x0)=lim-------------

               x-x0

По условию теоремы f’(x)=0. Поэтому

       f’(x)

f’’=lim----------

                                                                          x-x0

 

Допустим , что f’’(x)<0. Тогда по теореме о пределах функции найдётся такой интервал (x0-,x0+), в котором переменная величина f’(x)/(x-x0) сохраняет знак своего предела, т. е. выполняется неравенство

 

             

            f’(x)

       ----------<0 (x0- <x<x0+ )

          x-x0

 

Отсюда следует,что f’(x)>0 , если х-х0<0, или х>х0, и f’(x)<0, если х-х0>0, или х>х0. На оснавании первого достаточного признака существования экстремума заключаем, что в точке х0 функция f(x) имеет максимум. Аналогично показывается, что условие f’’(x)>0 обеспечивает минимум функции f(x).

                                            ч.т.д.

Таким образом получаем правило нахождения экстремумов (для дважды дифференцируемых функций):

1.Вычисляем первую производную f’(x) и из уравнения f’(x)=0 находим стационарные точки функции f(x).

2.Вычсляем вторую производную, и каждую стационарную точку х0 подвергаем испытанию:                                          

- если f’’(x)>0, то х0 – точка минимума функции;

- если f’’(x)<0, то х0 – точка максимума функции.

Замечание 1 : если f’’(x)=0 ,то это правило теряет силу и нужно воспользоваться первым признаком нахождения экстремумов. При этом экстремум может существовать , а может и не существовать.

Однако в случае своей применимости второй признак окаывается весьма удобным : вместо рассмотрения знака функции f’(x) в точках, отличных от предполагаемой точки экстремума, он позволяет дать ответ по знаку функции f’’(x) в той же точке.

 


Дата добавления: 2019-07-15; просмотров: 12;