Технологические основы производства



 

Общий подход к технологии

Общее технологическое решение по получению питьевой воды высшего качества, исходя из нормативных требований к ней (см. п.1.2) может быть только одним: максимально удалить все посторонние соединения из артезианской воды, затем провести кондиционирование полученной обессоленной воды, близкой по химическому составу к дистилляту, до соответствия требуемым физиологическим показателям воды высшей категории качества.

Такой подход диктует следующее: в голове процесса стоит фильтр грубой очистки, т.е. задерживающий возможные механические включения фильтр, затем эффективная система удаления солей и органических примесей, затем система прецизионного дозирования физиологически необходимых примесей. На различных этапах вода должна проходить дезинфицирующую обработку, для того, чтобы исключить попадание микроорганизмов и вирусов в аппараты линии водоподготовки и их гарантированное отсутствие в конечном продукте.

Рост антропогенной нагрузки на природные источники воды неуклонно снижает её качество, что приводит к тому, что традиционные схемы подготовки питьевой воды, включающие реагентную обработку, отстаивание, фильтрование на скорых фильтрах и обеззараживание хлорированием уже не могут обеспечить необходимое качество очистки.


Предварительная водоподготовка

Предподготовка является традиционным этапом схемы подготовки воды и предназначена для удаления грубых механических загрязнений, содержащихся в источнике или случайно попадающих в основной поток. Предподготовка обеспечивает бесперебойную работу последующих стадий технологической цепочки.

Удаление крупных взвешенных частиц производится при так называемом предварительном фильтровании (макрофильтрование или "грубая" очистка). Для этого на магистральную трубу устанавливают фильтры предварительной грубой очистки. Процесс фильтрования может осуществляться либо на поверхности, либо в глубине фильтрующего материала. Исходя из этого, данные фильтры имеют различное конструктивное исполнение. Например, в сетчатых фильтрах в качестве фильтрующего элемента используются металлические сетки с различными размерами ячеек и фильтрование осуществляется на поверхности сетки. В дисковых или картриджных фильтрах используется принцип глубинного (объемного) фильтрования. В большинстве случаев дисковые фильтры имеют неоспоримое преимущество перед сетчатыми вследствие их более высокой "грязеёмкости" (при этом, размер удаляемых частиц составляет не менее 25 мкм). Основным достоинством дисковых фильтров является сочетание поверхностной и объемной фильтрации, а так же возможность 100% отмывки пакета дисков.

Для грубого предварительного фильтрования применяются также фильтры засыпного типа. Принцип работы засыпных механических фильтров основан на фильтрации вышеуказанных загрязнений через слои зернистых и пористых фильтрующих материалов различной структуры и плотности. Возможно применение как однослойных, так и многослойных схем фильтрования. Такие фильтры применяют для эффективного удаления загрязнений с рейтингом частиц более 5 мкм. Настройка засыпных фильтров сводится к установке гидравлических режимов, периодичности и длительности взрыхляющей промывки. Регенерация, как правило, не требует применения химических реагентов и весьма кратковременна. Частота и время регенерационной промывки фильтра рассчитывается специалистами на основе параметров исходной воды и характеристик применяемой фильтрующей загрузки. Возможна организация автоматической промывки фильтров по заданной величине потери давления в фильтрующей загрузке. Последним достижением в этой области являются фильтры с непрерывной самопромывкой, которые способны непрерывно фильтровать воду с заданным качеством в течение нескольких лет, вплоть до истирания загрузки. Расход воды на самопромывку составляет 5…10% воды, поступающей в фильтр. [7]

 

Способы обессоливания воды

Термодистилляция

Способом, наиболее близким к тому, который в основном использует природа, является термодистилляция, т.е. испарение обессоленной воды и её конденсация на охлаждаемых поверхностях. Наиболее совершенными и экономичными современными технологиями получения питьевой воды термодистилляцией являются: установки мгновенного вскипания и пленочные двухступенчатые выпарные аппараты с горизонтальными трубными пучками.

Термодистилляция, по сравнению с другими методами получения чистой воды, имеет следующие преимущества:

наибольшая простота обслуживания;

наименьшие капитальные затраты;

наименьшие требования к составу исходной воды.

Основные недостатки термодистилляции, ограничивающие её применение:

наибольшие эксплуатационные затраты, в основном на энергоноситель, при отсутствии "дармового" утилизируемого тепла (которое присутствует, например, на ТЭЦ, АЭС и т.д.);

удельная стоимость питьевой воды, полученной этим методом, становится сравнимой со стоимостью воды, полученной мембранными методами, при достаточно высокой минерализации исходной воды (например, морской);

отсутствует опыт использования термодистилляции в линиях получения питьевой воды высшей категории.

 

Электродиализ

Электродиализ относится к группе электромембранных процессов, при которых отделяются частицы с отрицательным зарядом от частиц с положительным зарядом, в результате их движения к соответствующим злектродам. Для управления этим движением используются ионообменные мембраны, через которые проходит только определённый вид ионов, в зависимости от их заряда. При электродиализе постоянное электрическое поле оказывает воздействие на движение диссоциированных компонентов солей в водном растворе таким образом, что катионы, движущиеся в направлении к катоду, пропускаются через катионитовые мембраны и задерживаются на анионитовых мембранах, в то время как анионы, движущиеся в направлении к аноду, пропускаются через анионитовые мембраны и задерживаются на катионитовых мембранах. Т.о. происходит разделение ионов в исходном растворе и образуется обессоленный поток, т. н. дилюат и концентрированный поток, т. н. концентрат. Электродиализ реализуется в аппарате - электродиализаторе. Электродиализатор - это установка, которая состоит из стягивающих пластин с электродами и расположенным между ними пакетом, составленным из ионообменных мембран и отделителей потоков. Промышленное применение электродиализа для получения питьевой воды предшествовало применению обратного осмоса, но затем прогресс в разработке совершенных мембран для обратного осмоса сделал его основным мембранным методом получения чистой воды.

Большой опыт эксплуатации электродиализных установок показал, что обработка воды электродиализом является процессом весьма сложным, тесно связанным с проблемами электрохимии, технологии водоподготовки, гидродинамики, материаловедения и др. Одной из главных проблем является обработка исходной воды перед электродиализным процессом. Объясняется это, прежде всего, повышенной чувствительностью ионообменных мембран к таким веществам, как гуминовые и фульвокислоты, комплексные соединения железа с органическими веществами, железо других форм, марганец, коллоидная кремниевая кислота и др. Замечено, что электродиализный аппарат действует как электрофильтр. Коллоидные и взвешенные частицы, содержащиеся в исходной воде, поступающей на электродиализную установку, из-за явления электрофореза осаждаются внутри его камер на мембранах, "экранируя" их. В результате уменьшается эффективность процесса электродиализа - снижается выход по току и повышается омическое сопротивление аппарата. Сказанное определяет главное условие применения электродиализа: перед электродиализными аппаратами необходима глубокая очистка воды от органических веществ, соединений железа и других загрязнений. [8]

Основное ограничение применения электродиализа для получения воды высшего качества - трудность приобретения ионообменных мембран, имеющих необходимый сертификат качества, т.к серийно они в настоящее время не выпускаются.

 

Обратный осмос

Под термином осмос понимается процесс самопроизвольного проникновения растворителя (воды) через полупроницаемую мембрану, разделяющую сосуд, в более концентрированный раствор. Мембрана пропускает растворитель и задерживает соли, органические соединения и другие примеси. При этом уровень раствора со стороны с большей концентрацией повышается, а уровень с другой стороны уменьшается. Разность уровней по обе стороны мембраны в момент установившегося равновесия характеризует осмотическое давление растворенного вещества в растворе. Если в растворе создать давление, превышающее осмотическое, то возникает миграция молекул растворителя в направлении обратном ее естественному движению, т.е. вода из раствора начинает протекать через мембрану к растворителю. Такой процесс известен под названием обратный осмос.

Таким образом, принцип действия метода обратного осмоса для очистки воды заключается в том, что под давлением, превышающем осмотическое, происходит движение растворителя (воды) через полупроницаемые мембраны со стороны более концентрированного раствора (исходной воды) в сторону более разбавленного раствора. Очищенная вода, подается потребителю, а оставшийся более насыщенный солями и механическими частицами раствор (концентрат) сбрасывается в канализацию. Основным элементом обратноосмотических установок является мембрана. Исходная, загрязненная различными примесями, вода пропускается через поры мембраны, столь мелкие, что загрязнения сквозь них практически не проходят. Для того чтобы поры мембраны не забивались, входной поток направляется вдоль мембранной поверхности, который вымывает загрязнения. Таким образом, один входной поток разделяется на два выходных потока: раствор, проходящий через мембранную поверхность (пермеат) и часть исходного потока, не прошедшего через мембрану (концентрат).

Большинство современных эффективных установок использует мембраны, выполненные в виде элемента рулонного типа. Элемент содержит два слоя мембран, склеенных по трем сторонам "пакетом" и заведенных незаклееным краем во втулку канала пермеата. Этот пакет спирально обернут вокруг перфорированной трубы, в которую пермеат сливается из межмембранного пространства, проходя через дренажный слой из промежуточной сетки, которая формирует каналы и оптимизирует течение потока концентрата, увеличивая турбулентность потока, что препятствует отложению осадков на мембране. Мембрана действует как барьер для всех растворенных солей и неорганических молекул, а также органических молекул с молекулярной массой более 100. Молекулы воды свободно проходят через мембрану, создавая поток пермеата. Качество пермеата сопоставимо с качеством обессоленной воды, полученной по традиционной схеме Н-ОН-ионирования, а по некоторым параметрам (окисляемость, содержание кремниевой кислоты, железа и др.) превосходит. [9]

 

Обеззараживание воды

Виды обеззараживания

Дезинфекция воды (обеззараживание воды) - комплекс мер, предпринимаемых с целью очистки воды от микроорганизмов (вирусы, бактерии, цисты и т.д.). Как показывают многочисленные исследования, качество питьевой воды в значительной степени зависит от метода и режима ее обеззараживания. Существующие методы дезинфекции питьевой воды подразделяют на реагентные, безреагентные и комбинированные.

К реагентным методам обеззараживания воды относятся:

хлорирование воды;

озонирование воды;

серебрение воды (обработка воды ионами серебра);

бромирование воды и йодирование воды.

К безреагентным методам обеззараживания воды относятся:

ультрафиолетовое обеззараживание воды;

ультразвуковая обработка воды.

 


Дата добавления: 2019-07-15; просмотров: 90; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!