Как Ваксман открыл стрептомицин



 

Когда Флеминг работал в своей лондонской больничной лаборатории, неустанно и безмолвно изучая пенициллин и со свойственным ему спокойствием мирясь со всяческими проволочками, на расстоянии многих тысяч километров от него другой ученый старался раскрыть тайны почвенных бактерий. И нашел стрептомицин, чудодейственное средство против туберкулеза, которое, после пенициллина, следует считать важнейшим антибиотиком. Надо сказать с самого начала: хотя Флеминг и Ваксман в конце концов пришли к вполне сравнимым результатам, получили могущественные лечебные средства, доставляемые природой, одно – грибками, другое – бактериями, все же ни один из них не знал ни о существовании и ни о работах другого, пока оба не прославились. Флеминг был врачом и бактериологом; Ваксман ни тем, ни другим.

Зельман Ваксман, он на семь лет моложе Флеминга, родился в маленьком городке на Украине. Вначале мальчик брал частные уроки, а затем поступил в одесскую гимназию. Но царская Россия не так‑то легко открывала какому‑то Ваксману путь к высшему образованию, и поэтому он уехал в Америку, куда в те времена стремились многие молодые люди. Там он не стал поначалу ни портовым грузчиком, ни солдатом, а сразу посвятил себя изучению естественных наук. Но не бактериологии и не медицины, как это можно было бы предположить, исходя из его дальнейших успехов, а изучению почвы, ее плодородия.

– Конечно, – сказал он однажды много лет спустя, – именно об украинской земле, о черноземе я всегда и думал. Я не забывал о нем ни в Одессе, ни в американском колледже, ни в университете. Как можно было бы забыть о нем?

Он унес с собой воспоминания о родной земле, она и дала направление его исследованиям. И все же, занявшись почвоведением, решив стать агрономом, Ваксман обратился к бактериологии. Если начинают изучать перегной и. его значение для урожайности полей, тотчас же сталкиваются с почвенными бактериями, с этими важнейшими тружениками пахотной земли и любой почвы, действующими подобно невидимым гномам и снова превращающими лишенные ценности и даже просто вредные предметы – мириады мертвых насекомых и отмершие корни растений – в полноценные вещества, дающие жизнь, а именно в почву, мать всего живого.

Вначале Ваксман работал в штате Нью‑Джерси, на востоке страны, потом на другом конце страны, в знаменитом Калифорнийском университете; без особых усилий достиг первых академических степеней и затем сотрудничал в разных отделениях институтов, пока, наконец, не нашел себя и не занялся в 1915 году экспериментальной микробиологией, которой оставался всегда верен.

Впоследствии Ваксмана не раз спрашивали:

– Как же вы, в сущности, обратились именно к тем грибкам или бактериям почвы, которые вырабатывают стрептомицин?

Это был, конечно, простой вопрос, но, отвечая на него, Ваксману пришлось бы рассказать, что произошло в течение последующих двадцати пяти лет. В почве растет и развивается много видов бактерий и грибков. Здесь обитает и большая группа лучистых грибков. Среди многочисленных видов таких грибков Ваксман нашел штамм, показавшийся ему особенно подходящим для исследований, и хотя этот грибок был известен раньше, ученый выращивал все новые и новые культуры этого вида, так называемого стрептомицета. Много лет спустя Ваксман воспользовался этим названием и дал антибиотику, который его прославил, имя «стрептомицин». Но на протяжении тех долгих лет Ваксман не думал о стрептомицетах, и ему, конечно, даже и не снилось средство против туберкулеза. Ученый без устали трудился в лаборатории и руководил своими помощниками, изучавшими биологические особенности грибков почвы.

И все‑таки возникает вопрос: где переход от изучения определенного штамма почвенных грибков к туберкулезу и открытию стрептомицина? Где и каков мост, который соединил почвенные микроорганизмы, биологию почвы и перегной, с одной стороны, и медицину и туберкулез, одного из величайших врагов человечества, с другой стороны?

Тогда, как, впрочем, и теперь, во многих странах мира существовали научные общества, занимавшиеся борьбой с туберкулезом или поддерживавшие последнюю. Такое общество по борьбе с туберкулезом было и в Америке. Во время какого‑то из очередных заседаний общества одним из его членов был поставлен вопрос:

Чем объяснить, что туберкулезные палочки, содержащиеся в большом количестве в мокроте (и не только в мокроте) туберкулезного больного, погибают, когда попадают в землю? Не следует ли нам подумать, кому могли бы мы поручить такое исследование?

После продолжительных прений изучение вопроса была поручено Ваксману. Ведь в то время его уже знали в кругах специалистов как большого знатока почвенных бактерий, а ответ на поставленный вопрос мог быть дан только таким ученым, как он.

Ваксман охотно принял предложение, но сказал:

Посмотрим сначала сами, верно ли это.

В лаборатории Ваксмана культуру туберкулезных палочек покрыли землей – это можно сделать, не повреждая культуры, – и стали наблюдать за их судьбой. Исследователям не пришлось особенно долго ждать. Вскоре туберкулезные палочки исчезли, земля уничтожила их; это, очевидно, сделали какие‑то микробы, находившиеся в почве. Но какие? Задачей ученых стало выяснить какие.

Это был детективный роман в биологии. Надо было разгадать тайну и найти злоумышленника, но не для того, чтобы привлечь его к суду, а чтобы поблагодарить, так как он – эта мысль возникла тотчас же – в состоянии помочь врачам справиться с туберкулезом, жесточайшим врагом человечества. Можно подумать, что такие поиски не трудны. В небольшом количестве почвы, уничтожившей туберкулезные палочки, должны содержаться бактерии и грибки, уничтожавшие туберкулезные палочки. Но этот малый комок земли – при сравнении его с микроскопическими размерами туберкулезной палочки – вырастает до гигантской величины, и положение оказывается труднее, чем в популярном примере поисков булавки в стоге сена.

В 1939 году, когда на Ваксмана возложили эту задачу, он и его сотрудники отложили всю остальную работу, желая ответить на вопрос, важность которого была вне всяких сомнений. Они исследовали больше 10 тысяч разных микроорганизмов почвы, и можно себе представить, что только тесное содружество и большая преданность делу помогли им справиться с такой задачей. И они делали свою работу, твердо убежденные, что рано или поздно обнаружат именно микроорганизм, который находился в том комке земли.

Через год они уже могли говорить о первом успехе, небольшом и, разумеется, не решающем, но все‑таки успехе, и это обстоятельство укрепило их уверенность. Они посеяли культуру лучистого грибка и нашли в ней антибиотик. Это вновь открытое вещество Ваксман назвал актиномицином – красивое название, но актиномицин оказался слишком ядовитым, чтобы его можно было применять. Но это обстоятельство не повергло ученых в уныние. Поиски продолжались.

Один вид почвенных микроорганизмов давал одно вещество, другой – другое. Это была интересная работа, но ни один из найденных антибиотиков не удовлетворял требованиям и не мог быть применен. Опыты на животных показали, что все они чересчур ядовиты. Только в 1942 году в одном из видов лучистого грибка, в стрептомицете, было найдено неядовитое антибиотическое вещество. Оказалось, что оно уничтожает культуры туберкулезных палочек, выращенных в стеклянных чашках. Ваксман назвал это вещество стрептотрицином.

То время уже было эрой пенициллина, и всем ученым Америки были известны имена Флеминга, Флори, Чэйна и их успехи. Ваксман уже точно и безусловно знал, чего следует добиваться: надо получить антибиотическое средство против тех бактерий, на которые пенициллин, открытый Флемингом, не действовал; надо просто заполнить пробелы, оставленные пенициллином. Ибо, как бы ни был ценен пенициллин, на ряд бактерий он не действовал, а сам Флеминг сказал, что надо искать другие антибиотики, способные на то, на что пенициллин не способен, так как универсальным лечебным средством против всех инфекций пенициллин не стал.

Это было именно то, что Ваксман искал, – средство, вырабатываемое бактериями, которое могло бы служить дополнением к пенициллину. Цель стала Ваксману ясна только по мере продолжения исследований. В конце 1942 года ученый получил такое средство. И назвал стрептомицином. Это имя он выбрал вместе со своим сотрудником Шацем.[1]

Только теперь и началась действительно напряженная работа. Прежде всего надо было выяснить, каковы свойства нового вещества. Оказалось, что стрептомицин во многом отличается от пенициллина. Но решающее значение имел следующий, единственно важный вопрос: как стрептомицин влияет на человека; при каких болезнях, на которые пенициллин не оказывает действия, он помогает; наконец, является ли он тем средством против туберкулеза, которое имело в виду американское общество по борьбе с туберкулезом? На эти вопросы могли ответить только врачи. Клиника братьев Мейо в Рочестере, знаменитое учебное, исследовательское и лечебное учреждение, поставила себе задачу разработать медицинскую часть вопроса о стрептомицине.

Задача, которую клиника взяла на себя, была весьма ответственной. Ведь речь шла об одной из величайших надежд медицины, о борьбе с туберкулезом. Вначале надо было провести опыты на животных. При туберкулезе это не представляет трудностей. Если ввести туберкулезные палочки в брюшную полость морской свинки, у нее через несколько недель развивается милиарный туберкулез брюшины, которая оказывается обсемененной туберкулезными узелками. Животное вскоре погибает. В экспериментальном отделе клиники Мейо группе морских свинок впрыснули туберкулезные палочки и одновременно дали стрептомицин; эти животные не заболели. Опыт повторили, и результат был тот же. Он возвестил о ценности и о победе антибиотика, открытого Ваксманом и его сотрудниками.

Публикация первых сообщений о новом препарате против туберкулеза и об исключительно благоприятных результатах, которые достигаются с его помощью, привлекла всеобщее внимание. У миллионов больных появилась надежда на выздоровление, и они, разумеется, пожелали немедленно подвергнуться лечению этим новым препаратом.

Для Ваксмана и Шаца наступили трудные времена. Они начали отовсюду получать телеграммы с просьбами немедленно прислать стрептомицин, а когда это оказалось невозможным, то против обоих ученых разразилась буря возмущения. Возбуждение больных и их близких вполне понятно, так как ожидание препарата было для них равносильно ожиданию смерти. Но Ваксман и Шац еще не располагали таким количеством стрептомицина, какого от них отовсюду требовали.

– Зачем же вы встревожили весь мир и сказали, что нашли средство, уничтожающее туберкулезные бациллы, раз не можете дать его больным? – такой вопрос задавали люди и некоторые газеты.

Люди не хотели понять, что должно пройти некоторое время, прежде чем производство стрептомицина будет развернуто и станет возможным удовлетворить все требования. Впрочем, это длилось не особенно долго, и в ноябре 1949 года промышленное производство стрептомицина началось.

 

Дело Флеминга продолжается

 

Впечатление, произведенное открытием Флеминга во всем научном мире, было огромным. Бактериологи и биохимики видели перед собой необозримое поле деятельности, возможность новых, необычайных достижений. Это было тем более необходимо, что, как уже говорилось, стали известны болезни, где пенициллин не помогал. С другой стороны, было вполне логичным считать, что грибок, случайно найденный Флемингом, не является единственным производителем столь ценного лечебного средства. Подобное вещество могло оказаться и в других видах грибка. Поэтому в бактериологических лабораториях и соответствующих научных учреждениях начались лихорадочные исследования грибков и вырабатываемых ими веществ. Это напоминало соперничество, начавшееся, когда в Клондайке, в Канаде, были найдены золотые россыпи, а в Южной Америке – залежи алмазов и туда устремились тысячи искателей.

Из числа первых полученных после пенициллина антибиотиков следует назвать бацитрацин, добытый в 1950 году. Этот антибиотик был выделен не из плесневелого грибка, а из бацилл, и его история представляет интерес. В одну из американских больниц поступила двенадцатилетняя девочка, страдавшая гнойным воспалением костного мозга. В гное у нее оказался не обыкновенный кокк, вызывающий такие процессы, а вид бацилл, неизвестный до; того времени. Когда была получена культура таких бацилл на питательной среде, оказалось, что они, подобно плесневому грибку Флеминга, вырабатывают вещество, угнетающее рост других, особенно гноеродных бактерий. Это вещество нарекли бацитрацином. Девочку звали Маргарет Треси.

Вначале бацитрацин оказывал вредное побочное действие на почки, но впоследствии удалось так изменить его, что да‑ же впрыскивание препарата не причиняло вреда. Особым преимуществом нового средства была возможность применять его совместно с пенициллином, что весьма важно при так называемой смешанной инфекции, одновременном заражении разными видами бактерий.

Смешанная инфекция весьма часто затрудняет лечение и при туберкулезе. Молодую женщину с туберкулезной каверной в легком подвергли операции. Через полгода ее состояние ухудшилось в связи с простудой. Она поступила в больницу в тяжелом состоянии: температура доходила у нее до 40 градусов и наблюдалась очень быстрая реакция оседания эритроцитов (РОЭ). У больной развился гнойный плеврит, и в гное наряду с туберкулезными палочками были обнаружены гноеродные стафилококки. Через день у больной извлекали гной из плевральной полости и вводили туда бацитрацин. И через неделю лихорадка прекратилась, общее состояние больной улучшилось, гноеродные бактерии исчезли. Для борьбы с туберкулезными палочками больной в плевральную полость вводили новый химический препарат ПАС, зарекомендовавший себя как средство против туберкулеза. Это оказало такое благоприятное действие против туберкулезной инфекции, что больную вскоре можно было отпустить домой. Подобные случаи успешного лечения, разумеется, побуждали ученых к поискам новых антибиотиков.

Другим средством из этой группы стал хлоромицетин, полученный также в ранний период исследований. Ученые нашли его в неизвестном до того времени почвенном грибке, растущем в Венесуэле. Они определили химическое строение и свойства хлормицетина и попытались получить его искусственно. Ведь приготовление лекарств синтетическим путем было давним стремлением химиков: это обеспечило бы полную однородность всех серий препарата, без каких‑либо различий, и в руках у врача оказалось бы средство, на которое всегда можно положиться.

Следующим препаратом раннего периода стал ауреомицин. Его вскоре начали широко применять; он также добывается из грибка. Ауреомицин оказался полезным для лечения болезни Банга (бруцеллез). Заболевание это вызывается мельчайшим организмом – бруцеллой Банга, поражает главным образом домашний скот и приводит к выкидышу у коров, вследствие чего сельское хозяйство терпит большой ущерб. Бруцеллез, правда довольно редко, передается и человеку, главным образом дояркам, но иногда и лицам, не имеющим отношения к животноводству; последние заражаются через сырое молоко. Заболевание сопровождается перемежающейся лихорадкой.

В конце 40‑х годов американец Финли добыл антибиотик, который назвал террамицином. Он оказался пригодным для лечения многих и притом весьма различных инфекционных заболеваний.

 

От шприца к таблетке

 

Исследования ободрили бактериологов и биохимиков и укрепили надежды на открытие антибиотиков, которые, не происходя из плесневых грибков, подобны оригинальному пенициллину или превосходят его по лечебным свойствам, но при этом сохраняют его ценное качество – безвредность для организма в лечебных дозах.

Лечение чудодейственным препаратом – пенициллином было вначале и сложным и дорогим. Хотя исходный материал – плесневой грибок – ничего не стоил, изготовление пенициллина требовало больших затрат. Кроме того, впрыскивали пенициллин каждые четыре часа, что иногда было затруднительным. Поэтому прежде всего старались удешевить производство пенициллина, что вскоре удалось. В то же время исследователи пытались избавиться от необходимости впрыскивать пенициллин и добиться возможности принимать это драгоценное лекарство в таблетках.

Уже первые исследователи, работавшие в этой области, – Флеминг, Флори и Чэйн занялись этой проблемой. Так как известно, что пенициллин разрушается кислотами, а поэтому и желудочным соком, было предложено при лечении таблетками одновременно давать больному и щелочь, например питьевую соду, чтобы сохранить действие пенициллина при приеме его через рот. Кроме того, изготовляли пенициллиновые пилюли, покрытые оболочкой, непроницаемой для кислоты желудочного сока; такая пилюля распадалась только в тонких кишках больного, и пенициллин освобождался. В тонких кишках он мог всасываться в циркулирующую кровь и оказывать действие. Такой способ, во всяком случае, позволял давать пенициллин в таблетках. Но, несмотря на эти успехи, ученые искали лучших путей.

Понадобились антибиотики более широкого спектра действия. Идеальным антибиотиком, во всех 100 процентах случаев действующим на бактерии, вредные для человека, мы все еще не располагаем. Поэтому ученые продолжают поиски.

Эти поиски вызываются еще тем важным обстоятельством, что бактерии постепенно привыкают к пенициллину, возникают расы, устойчивые к нему, и тогда пенициллин больше не помогает. Именно потому, что бактерии могут оказаться стойкими по отношению к пенициллину, и нужны новые антибиотики. Это позволит оказывать помощь даже в случаях, когда добрый старый пенициллин не действует. Поэтому ученые должны проводить дальнейшие исследования.

Будет ли найдено что‑либо новое? Удастся ли открыть антибиотик, пригодный для борьбы с видами бактерий, непобедимыми до сего времени? Вот в чем был вопрос. Копание в земле, ставившее себе целью найти новый ценный грибок, не удовлетворяло исследователей и не вселяло уверенности в успех. Однако и в этой области были достигнуты результаты. Помимо пенициллина, полученного Флемингом, и стрептомицина, открытого Ваксманом, следует назвать ауреомицин, оказавшийся пригодным для лечения брюшного тифа. Но возникла необходимость в новых методах. В 50‑х годах английский биохимик Бэтчелор, он работал в своей лаборатории, поставил задачу выяснить природу пенициллина, определить его состав и установить, какая из его составных частей обладает сильно выраженной способностью не только задерживать рост бактерий, но и уничтожать их.

Бэтчелор установил строение ядра пенициллина. Открытие Бэтчелора имело большое значение, так как давало возможность приступить к созданию новых пенициллинов. Вначале это были полусинтетические препараты: частью то, что давала природа, грибки (или бактерии), и другой половины, которую создавали химики. Таким образом, был открыт путь к созданию лекарств с заранее заданными свойствами.

Вот, например, полусинтетический пенициллин U, созданный Брандлем и Маргейтером (Тироль). Оказалось, что добавление такого вещества, как фенокситианол, усилило действие препарата на гноеродные кокки. Он оказался устойчивым даже к сильным кислотам и поэтому не так быстро разрушался в организме. А самое главное, этот пенициллин можно было не только впрыскивать, но и принимать в таблетках. Он не разрушался в желудке.

Но нужны ли вообще новые пенициллины? Разве старого недостаточно?

Иногда заболевание, как это было с маленькой Маргарет, вызывают не обыкновенные бациллы или кокки, а какой‑либо редкий, необычный вид бактерий. В таких случаях после определения вида возбудителя приходилось изготовлять соответствующий антибиотик, если уже имевшихся было недостаточно.

В учении об антибиотиках началась новая эпоха; пенициллины, которые теперь химики начали изготовлять, стали как бы пулями для стрельбы в цель. Чудодейственные пули, о которых мечтал Пауль Эрлих, были найдены.

Что же требовалось от нового пенициллина и чего искали ученые? Прежде всего пенициллин, стойкий к соляной кислоте желудочного сока. Такой пенициллин был получен. Кроме того, пенициллины, более мощные, чем старый, чтобы микробы не могли к нему привыкнуть и выработать устойчивую расу.

 

Искусственный пенициллин

 

Здесь надо назвать имена двух исследователей, которые особенно много потрудились для разрешения проблемы искусственного пенициллина, – Ритцерфельда и Фридерисцу‑ ка. Назовем и двух американцев – Робинсона и Стюарта, которым посчастливилось в 1961 году перешагнуть границы старого пенициллина и создать важные полусинтетические пенициллины. Рассказать об этом в историческом очерке, конечно, легче, чем сделать.

Пенициллин, его действие, затем возникновение стойкости у бактерий – вот вопросы, интересовавшие биохимиков. Каким образом бактерии могут противостоять такому мощному противнику, как пенициллин? Как приобретают сопротивляемость по отношению к нему? Оказалось, что бактерии, стойкие или ставшие стойкими к пенициллину, способны вырабатывать фермент, который в состоянии расщеплять пенициллин, так сказать, разламывать и тем самым делать его бессильным. Вещество это называется пенициллиназой. Большие стафилококковые внутрибольничные инфекции объясняются именно этим обстоятельством.

Естественно, не одна только пенициллиназа причиной, что у бактерий, подвергнутых действию пенициллина, появляется такая сильная сопротивляемость. Здесь должны играть роль и другие факторы, и биохимикам предстоит решить большую задачу – проникнуть в эту тайну природы. Медицина ждет этого.

И у полусинтетических пенициллинов есть слабые стороны. Во многих отношениях они более мощны, чем первоначальный, так называемый бензил‑пенициллин. Правда, это не такая уж беда. При обычной стафилококковой инфекции, например при большом фурункуле, применяется старый пенициллин. Новые пенициллины используются при инфекции стойкими гноеродными кокками. Введение очень больших количеств этих препаратов не должно вызывать опасений, так как они не ядовиты, в чем их большое преимущество.

Насколько важно создание новых пенициллинов, можно лойять на примере бациллоносителей. Не одну эпидемию тифа можно объяснить их присутствием. Бациллоносители сами по себе – люди здоровые, но их выделения, об опасных свойствах которых они не подрзревают, могут стать причиной бедствия.

Оздоровить таких бацилловыделителей, освободить их от болезнетворных возбудителей, которые они в себе носят, до последнего времени оставалось трудной задачей, так как можно применять только средства, безвредные для человека, а они помогали очень слабо. Некоторые из новых антибиотиков пригодны для этой цели, и теперь уже не трудно обезвредить бациллоносителя, как только он обнаружен.

В некоторых случаях у особо чувствительных людей введение пенициллина может вызвать аллергическую реакцию, явление невосприимчивости к данному веществу, при этом наблюдаются сыпь, зуд, отеки и многие другие, иногда тяжелые, явления. Но если они своевременно распознаны, то с ними быстро удается справиться. О механизме этой реакции рассказано дальше. Тут мы хотим отметить, что получение препарата, который бы не вызывал такой реакции, имеет большое значение. Такие препараты сейчас создаются и даже созданы.

Пенициллин, несомненно, не только одно из важнейших, но и одно из интереснейших лечебных средств, и изучать его – весьма благодарная задача для медика, биолога, химика и биохимика. Химики должны были работать над пенициллином уже потому, что надо было получить представление о его сущности и его способности уничтожать бактерии.

При рассматривании плесневого грибка, так называемого Penicillium chrysogenum, под микроскопом мы видим очень изящный клубок ветвей с шаровидными кончиками, напоминающий своеобразную кисточку. Как всем живым существам, так и этим грибкам свойствен обмен веществ. Они выделяют при этом вещества, подлежащие удалению из организма. Оказалось, что они помогают грибкам защищать свое жизненное пространство и обеспечивать себя пищей.

Если на стеклянную чашку, куда Флеминг высевал культуру бактерий, попадал плесневой грибок и препятствовал росту бактерий по соседству, для плесневого грибка это было очень полезным, защитным процессом и обеспечивало его пищей в виде той питательной среды, которая находилась в чашке. Плесневой грибок побеждал, выделяя продукт своего обмена веществ, вредный для бактерий и не дававший им приблизиться к грибку. И вовсе не заботился о выработке продукта, полезного человеку.

Химики нашли, что ядром пенициллина является 6‑амино‑пенициллиновая кислота. Она соединяется с другими молекулами, имеющимися в питательной среде для соответствующей культуры бактерий.

Чтобы получить препарат с определенными свойствами, надо было только влиять на питательную среду. К ней прибавили фенилуксусной кислоты, и благодаря этому грибки стали выделять пенициллин в большем количестве и более сильный, что очень важно для фабричного производства этого лекарства. Кроме того, изменение питательной среды привело к изменению качества продукта.

Это позволяет производить пенициллины с широким спектром, как их называют специалисты, пенициллины, способные убивать ряд бактерий, более длинный, чем тот, на который действовал исходный. Слова «широкий спектр» теперь приводятся как рекомендация ряда пенициллинов. Внося изменения в питательную среду, благодаря чему возникают новые антибиотики, биохимики стремятся получать лекарства широкого спектра.

Во всяком случае, уже в течение первых лет работы над новыми препаратами после многих тысяч опытов было получено около ста пятидесяти новых средств, признанных пригодными и даже очень ценными. Конечно, не всякое вещество, прибавленное к питательной среде, было благоприятным для грибка и побуждало его вырабатывать хороший пенициллин. Даже грибкам подходит не всякая пища.

Ученые искали и новый исходный материал, новые грибки. Достигнув даже значительных успехов, исследователи не прекращали поисков, которые иногда были удачными. Так Бротцу нашел на острове Сардинии грибок цефалоспориум, которым занялись два исследователя из Оксфорда, Абрагам и Ньютон. Им удалось получить из этого грибка новый пенициллин. Он, правда, не обладал широким спектром, но на некоторые бактерии действовал лучше, чем пенициллин G.

Этими работами, разумеется, были разрешены далеко не все задачи, связанные с пенициллином и поставленные перед химиками. В настоящее время главное – стать независимыми от грибков, этих естественных производителей чудодейственного лечебного средства. Не полусинтез, а полный синтез – таков теперь лозунг. В сущности, ученые однажды уже думали, что это достигнуто. В 1959 году, когда Шиэн провел продолжительные опыты, чтобы искусственно получить ядро пенициллина, уже упомянутую нами пенициллиновую кислоту. Казалось, этим все достигнуто, но метод настолько сложен, что оказался непригодным для фабричного производства пенициллина.

Потом другие химики пришли к мысли пойти противоположным путем. Они сказали себе: «А что будет, если мы не станем мучиться, искусственно получать 6‑аминопенициллиновую кислоту, а затем присоединять к ней другое вещество, чтобы, таким образом, возник новый пенициллин? Возьмем готовый пенициллин и расщепим его. Тогда мы будем иметь в своих руках ядро, пенициллиновую кислоту, и сможем дальше работать с этим ядром и создавать новые пенициллины». Хорошая мысль, но не так уж легко осуществимая. Японские ученые, работавшие над этой проблемой, не достигли успеха. Им не удалось разорвать связи, созданные природой, и они в конце концов отказались от этой задачи.

Но двое ученых из Эльберфельда, Кауфман и Бауер, оказались более счастливыми. Они пользовались кишечной палочкой, микроорганизмом, в нормальных условиях обитающим в кишечнике. Достаточно умертвить бактерии, чтобы они приобрели способность расщеплять пенициллин G на две части: 6‑аминопенициллиновую и фенилуксусную кислоты. Расщепление происходит легко, и при этом получаются достаточные количества пенициллиновой кислоты. Как оказалось, путь был совсем простым, но только надо на него напасть. А это в конце концов тайна всякого успеха в науке.

Все остальное не представляет особых затруднений для химиков. В настоящее время они уже умеют получать чистую кристаллическую 6‑аминопенициллиновую кислоту, что дает им возможность создавать полусинтетические пенициллины. Но, несмотря на это, старый пенициллин G не забыт; более того, многие врачи снова охотно возвращаются к нему.

 

Как были найдены вирусы

 

Когда бактериология, казалось, достигла зенита своей славы и в поле зрения микроскопа могло быть обнаружено и показано всякому человеку, интересующемуся этой великой главой медицины, множество возбудителей важнейших инфекционных болезней, исследователи были вправе с гордостью подвести итог своим победам. Но, делая это, они должны были признать, что в их науке еще много пробелов. Конечно, при сильном увеличении можно увидеть возбудителей холеры и туберкулеза, гноеродные кокки и многие другие бактерии. Но где возбудители оспы, кори, гриппа, инфекционного детского паралича и некоторых других болезней, не обнаруженные до сего времени, хотя во всех странах земного шара в лабораториях всех бактериологических институтов их искали со всем усердием, какого этот вопрос заслуживал?

Ведь возбудители этих болезней должны быть тут же, совсем близко. Если капелька из оспенного гнойничка больного попадала хотя бы даже в ссадину здорового человека, последний непременно заболевал оспой, если только ему ранее не сделали предохранительную прививку. Следовательно, в этой крохотной капельке должен содержаться болезнетворный возбудитель. Но найти его не удавалось. Так же обстояло дело и при некоторых других инфекционных болезнях, передававшихся очень легко. В течение многих лет ученые ломали голову, почему не удается открыть их возбудителей.

Они, очевидно, так мелки, что увеличения обыкновенного микроскопа недостаточно, чтобы их обнаружить, или столь своеобразны, что не могли быть найдены по другим причинам. Позднее, когда Шаудин открыл возбудителя сифилиса, бледную спирохету, которая на протяжении многих лет ускользала от исследователей и была обнаружена только в затемненном поле микроскопа, подобный метод решили применить и при поисках вирусов. Однако и это был ложный путь. Нет, вирусы оставались невидимы только из‑за малых размеров.

Первым, кто заговорил о вирусе в современном смысле этого слова, был великий Пастер. Тогда он изучал бешенство и предложил знаменитые предохранительные прививки против этой страшной болезни, хотя и не знал его возбудителя, вируса, и даже еще не составил правильного представления о нем. Когда ученые приступили к исследованию вирусов, они прежде всего применили фарфоровые фильтры. Поры такого фильтра настолько мелки, что даже бактерии не проходят через них и задерживаются.

Среди этих ученых был и русский ботаник Дмитрий Ивановский, занимавшийся физиологией растений. Уже в 1887 году Ивановский вместе с В. Половцевым приступил к изучению так называемой мозаичной болезни табака. Листья табака, пораженные болезнью, теряют хлорофилл – зеленое красящее вещество – и тем самым биологические свойства. Исследования обоих ученых продолжались много лет, прежде чем Ивановский сообщил о результатах. При мозаичной болезни табака следует различать два заболевания:, одно из них вызывается грибком, низшим растением, другое – возбудителем, еще неизвестным нам.

Но что это за возбудитель? Исследования Ивановского подвигались очень медленно, и даже теперь, когда загадка мозаичной болезни решена, можно представить, как велики трудности, которые ему надо было преодолеть. Только когда он произвел опыты с мелкопористым фарфоровым фильтром, через который пропускал сок листьев табака, и установил, что болезнетворное начало проходит через мельчайшие поры фильтра, он приблизился к ответу на свой вопрос: это какой‑ то яд, а не бактерии, так как они задержались бы в фильтре. Природа начала, вызывавшего мозаичную болезнь, оставалась неясной, хотя в том, что причина найдена, сомнений не было. Ведь соком, проходившим через поры фильтра, можно заразить целое поле табака.

Ивановский сообщил о своих данных в 1898 и 1902 годах. В 1903 году он защитил докторскую диссертацию в Варшавском университете после того, как ранее, в 1895 году, получил степень магистра. В своей диссертации Ивановский писал также, что ему не удалось получить из заразного сока какие бы то ни было культуры, из чего он сделал вывод, что возбудитель мозаичной болезни – организм корпускулярного строения, то есть мельчайший организм. В клетках пораженных листьев табака Ивановский обнаружил образования, напоминавшие кристаллы. Вначале они были названы кристаллами Ивановского, впоследствии установили, что это скопления вирусов.

Так было положено основание новой ветви в бактериологии – вирусологии, учению о вирусах; так была выяснена причина не только мозаичной болезни табака, но и многих заболеваний человека и животных. Можно предположить, что возбудителями болезней, при которых мы не находим ни кокков, ни бацилл, ни подобных им микроорганизмов, служит вирус. Когда впоследствии был изобретен электродный микроскоп, дававший огромные увеличения, вирусы увидели воочию, а в дальнейшем исследователи научились и культивировать их. Загадка оспы, детского паралича и некоторых других инфекционных болезней была благодаря исследованиям Ивановского разрешена.

Впрочем, его эксперименты, столь важные для изучения вирусов, не обратили на себя должного внимания. Они разделили судьбу столь многочисленных научных достижений, которые были чересчур новыми, чересчур ошеломляющими, чтобы сразу получить всеобщее признание.

Несмотря на все это, изучение вирусов, быть может, не продолжалось бы, если бы эти загадочные болезнетворные возбудители не привлекли внимания сельскохозяйственных кругов. К вирусным заболеваниям был отнесен также и ящур, весьма заразная инфекционная болезнь домашнего скота, наносившая большой вред сельскому хозяйству; ее возбудителя все не удавалось обнаружить. В Германии был учрежден государственный институт по изучению ящура.

В то время в Германии работал ряд выдающихся бактериологов. Одним из наиболее известных был профессор Фридрих Леффлер в Грейфсвальде, ученик Роберта Коха, открывшего туберкулезную палочку. Сам Леффлер открыл палочку дифтерии, и его имя знал весь ученый мир. И вот ему было поручено заняться поисками возбудителя ящура.

Леффлер с сотрудниками, в числе которых был Пауль Фрош, тотчас же принялся за работу. Вначале он провел опыт с фарфоровым фильтром, так как не знал, что собой представляет интересующий его возбудитель является ли он одним из видов бактерий, застревающих в фильтре, или содержится в фильтрате, в жидкости, проходящей через фильтр? На этот вопрос он вскоре получил ответ: возбудитель нужно искать в фильтрате, прошедшем через поры фильтра. «Если бы это был яд, растворенный в жидкости, – рассуждал Леффлер, – материалом, взятым от одного животного, нельзя было бы заразить обитателей целого хлева. Это должно быть начало, способное размножаться, живое начало. Возбудитель по своим микроскопическим размерам должен быть меньше бактерии, иначе он застрял бы в фильтре. Это может быть, – заключил Леффлер свои рассуждения, – только вирус, он и вызывает ящур. Итак, ящур – вирусное заболевание. Что вирус не виден под микроскопом, ничего не доказывает: ведь существуют возбудители болезней меньше бацилл или коков. Что вирус не удается посеять на питательной среде – на агаре или на бульоне – тоже ничего не доказывает: сегодня это не удается, завтра удастся». Приблизительно так Леффлер формулировал свое открытие в 1898 году, и его немедленно признали большим научным достижением.

Вскоре были сделаны новые важные открытия в этой области. Одно из них, принадлежащее англичанину Туорту, заслуживает упоминания, потому что его можно считать предвестником исследований Флеминга, касающихся пенициллина, Туорт, работавший в бактериологической лаборатории, заметил как‑то, что одна из его культур бактерий растворилась и попросту исчезла. Что могло стать причиной такого необычного явления? Все работники лаборатории ломали голову, пытаясь ответить на этот вопрос.

Туорт профильтровал культуру через фарфоровый фильтр, не пропускавший бактерий, затем прибавил несколько капель жидкости, прошедшей через фильтр, к свежей культуре бактерий, которые, как было известно, обычно очень хорошо росли. И вот они перестали расти. Какое‑то вещество, содержавшееся в фильтрате, по‑видимому, мешало их росту. Необычные события в лаборатории Туорта стали известны и другим исследователям, но никто не мог их объяснить.

Подобное же наблюдений сделал в 1917 году француз д'Эрелль. Оказалось, что таким образом может быть растворен не любой вид, а только определенные бактерии. Это должно было быть вызвано веществом, подобным вирусу, хотя найти его не удавалось.

Итак, уже тогда назревало открытие антибиотиков, – веществ, образуемых мельчайшими живыми организмами и направленных против других мельчайших живых организмов.

И все же вскоре наступило время, когда ученые получили возможность воочию увидеть таинственные вирусы, которые ранее были невидимы. В этом им помогли оптическая промышленность и физика. Был создан электронный микроскоп – инструмент, дающий увеличения не в 2 тысячи раз, как обыкновенный, а в 30 тысяч. Вирусы стали видимыми. Возникла новая область науки – вирусология, и началась новая битва с мельчайшими возбудителями болезней.

 


Дата добавления: 2019-02-12; просмотров: 201; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!