Запоминающее устройство на туннельных диодах



Н. – Правда, я довольно плохо знаю эти приборы и совершенно не представляю, как можно их использовать для создания запоминающих устройств.

Л. – Туннельный диод при напряжении, превышающем некоторый уровень (скажем 0,4 в), ведет себя в проводящем направлении как обычный диод. А при напряжении ниже этого уровня при пропускании тока в том же направлении наблюдается совершенно парадоксальная картина – при снижении напряжения ток диода увеличивается. Характеризуя это явление, говорят о наличии зоны отрицательного сопротивления. Некоторому напряжению, именуемому пиковым напряжением, соответствует максимальное значение тока. При дальнейшем уменьшении напряжения ток очень быстро снижается до нуля. На рис. 137 я изобразил кривую, характеризующую изменение тока диода в зависимости от напряжения на его выводах. При питании такого туннельного диода заданным напряжением через соответствующим образом подобранный резистор можно получить систему с двумя устойчивыми состояниями.

 

 

Рис. 137. Вольт‑амперная характеристика германиевого туннельного диода.

 

Н. – Но я совершенно не вижу, как можно получить такой результат!

Л. – Посмотри приведенную на рис. 138 схему.

 

 

Рис. 138. Схема использования туннельного диода в качестве запоминающего элемента.

 

На этот раз ты должен признать, что она не столь уж сложная. Попробуем определить ток I диода и напряжение на его выводах U . Иначе говоря, нам нужно найти такую пару значений I и U , которая одновременно устроила бы потребителя (туннельный диод) и поставщика электроэнергии (батарею с электродвижущей силой е и внутренним сопротивлением R ). Кривая требований потребителя приведена на рис. 137. Предписанные поставщиком соотношения величин U и I согласно закону Ома характеризуются прямой, которую ты знаешь под названием «нагрузочная прямая» или «нагрузочная характеристика». На рис. 139 я начертил вольтамперную характеристику туннельного диода и провел нагрузочную прямую; как ты видишь, пары значений U и I , соответствующие устойчивому состоянию, графически обозначены точками А и В .

 

 

Рис. 139.  Три возможных состояния изображенной на рис. 138 схемы. Только точки А и В соответствуют устойчивым состояниям.

 

Н. – Туннельный диод, действительно, чудесный прибор; для создания схемы с двумя устойчивыми состояниями требуются всего лишь батарея, один резистор и один диод. Но что ты сделаешь с точкой С . Это еще одно возможное состояние?

Л. – Да, возможное, но неустойчивое. В этом месте динамическое сопротивление туннельного диода отрицательно и соответствующее ему состояние не может долго сохраняться. Как ты видишь, на нескольких туннельных диодах можно создать запоминающее устройство. Его преимущество в исключительном быстродействии; запись занимает лишь ничтожную долю микросекунды, а точнее, время здесь измеряется наносекундами, т. е. миллиардными долями секунды. В запоминающих устройствах на ферритовых тороидальных сердечниках в лучших случаях удается достичь микросекунды, так как для перемагничивания феррит требует некоторого времени. На туннельных диодах, если каждый из них питать через два резистора, можно сделать, как на ферритовых тороидах, матрицы для записи по строкам и колонкам. Кроме того, на этих диодах несложно сделать нестираемую при считывании запись.

 

 

Н. – Теперь нет никаких сомнений, что, если когда‑нибудь мне придется делать цифровую вычислительную машину, ее запоминающее устройство будет, несомненно, на туннельных диодах.

Л. – Идея хорошая, но, к сожалению, на пути ее осуществления имеется одно препятствие, которое в ближайшее время бесспорно уменьшится – туннельные диоды пока еще относительно дороги.

 

 


Дата добавления: 2019-02-12; просмотров: 357; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!