Клетка – основная форма организации живой материи. Основные структурные компоненты эукариотической клетки: наружная мембрана, цитоплазма, ядро, органоиды, включения.



                   Существует 2 гипотезы появления эукариотических клеток: 1) инвагинационная (впячивание) – в предковой клетке прокариот появляется впячивание мембраны и образуются первичные органоиды; она объясняет появление двух мембранных структур (ядро, пластиды, митохондрии). 2) симбиотическая – клеткой-хозяином был прокариот анаэроб, который способен к амебовидному движению. Переход к анаэробному дыханию связан с проникновением аэробапрокариота в клетку-хозяина и существования в виде митохондрий. У растений появляются хлоропласты, где симбионтами послужили сине-зеленые водоросли. Основной довод в пользе этой гипотезы, в том, что митохондрии и хлоропласты им собственную ДНК. Генетический материал ядра мог образоваться из ДНК симбионтов прокариот, т.о. за 1 млрд л эволюции эукариот, появилось все многообразие живых организмов от простейших до человека.

                   Клетка эукариота включает 3 составные части: 1) поверхностный аппарат – включает 3 части: а) надмембранный компонент – не живой продукт жизнедеятельности клетки, отличается у разных царств (хитин, целлюлоза, гликокалекс); б) подмембранный – (кортикальный) включает фибриллярные структуры, микротрубочки микрофиламенты, которые способствуют поддержанию формы клетки. Функции: осуществляет передачу информации глубинным структурам клетки; способствует изменению конфигурации плазмолеммы. в) плазмолемма (ЦПМ) – способна к самозамыканию; пластичность, избирательная проницаемость. Функции: опорная, рецепторная, регуляторная, стабилизирующая, транспортная. Имеет 3 слоя: 2 белковых расположенных рыхло снаружи, 1 – внутри липиднобималекулярный.

2) цитоплазма состоит из: гиалоплазмы, органоидов, включений. Гиалоплазма – основное вещество цитоплазмы, заполняющее пространство между клеточными органеллами, внутренняя среда обеспечивает связь всех органоидов. 90% - вода, 10% - белки, аминокислоты, нуклеотиды, ионы и др. в-ва. Содержит множество белковых нитей – филоментов (пронизывают цитоплазму, образуя цитоскелет). Органоиды – постоянные компоненты клетки, расположенные в цитоплазме, имеют определенную структуру и выполняют определенные функции. По назначению делят на: общие (во всех клетках) и специальные (присуще небольшим группам клеток). По строению на: мембранные (рибосомы, микротрубочки, микрофиломенты) и немембраные (ЭПС, КГ, лизосомы). Включения – непостоянные компоненты, продукты жизнедеятельности клетки, неживые, не выполняющие активных функций, синтезируются в клетке, используются в процессе обмена.

3) ядро – наиважнейший компонент всех эукариотических клеток (кроме эритроцитов), иногда встречаются многоядерные. Оно необходимо для жизни клетки, основное свойство: большие компенсаторные способности и возможности. Функции: хранение и реализация ген-ой инф-ии, центр управления обменом в-тв, регулирует активность кл.

8. Хромосомы – структурные компоненты ядра. Строение, состав, функции. Понятие о кариотипе. Правила хромосомных наборов.  

                   Функции хромосом: обеспечивают хранение генетической информации, использование ее, регуляцию считывания, удвоение (самокопирование), передачу генетического материала от материнской клетки к дочерней.

                   Хим-ая организация хромосом: состоят в основном из ДНК и белка, нуклеопротеидные фибриллы. Белки составляют 65% массы хромосомы, разделяются на гистоны и негистоны (они соединены с мол-ми ДНК, чем препятствуют считыв ген-кую инф-ию – это их регуляторная роль). 

                    Выделяют несколько уровней спирализации или компактизации хроматид: 1 – нуклеосомная нить, 8 нуклеосомных гистонов, образующих белковые тела. на которые спирально накручивается молекула ДНК длиной ок. 200 пар нуклеотидов вместе с белковыми телами составляют нуклеосому. Благодаря такой организации в основе структуры хроматина лежит нить представляющую цепочку нуклеосом со свободными от белков участками ДНК. 2 – хроматиновая фибрилла – дальнейшая компактизация нуклеосомных нитей, обеспечивается гистоном Н1, который сближает белковые тела (коры), в результате образуется компактная структура, хроматин активен. 3 – интерфазаная хромонема. петлистая структура – хроматиновые фибриллы укладывают в петли, при участии негистоновых белков, хроматин не равномерно активен, участки эу- и гетеро-хроматина. 4 – разетковидная структура – формирование хромомеры, более компактная укладка петель и переход к метофазной хромосоме, полная иноактивация.

                   Кариотип – совокупность признаков хромосомного набора.

                   Правила хромосомных наборов: 1) правило постоянного числа, формы, размера хромосом (генетический критерий вид). Число хромосом не свидетельствует об уровне организации. 2) парность хромосом – в нормальном кариотипе всегда четное число хромосом; парные хромосомы – гомологичны. 3) индивидуальность хромосом – каждая пара хар-ется своими особенностями. 4)непрерывность хромосом – при делении клетки хр-мы автопродуцируются, каждой дочерней хр-ме. Непрерывность связана с редуплекацией ДНК. 

9. Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Специализация и интеграция кл многоклеточного организма.  

                   Клетка является основной единицей биологической активности. Она способна к самовоспроизведению в среде, не содержащей других живых систем. Эта наименьшая по объему стр-ра, к-ой присуща вся совокупность свойств жизни и к-ая может в подходящих условиях поддерживать эти свойства в самой себе, а также передавать их в ряду поколений.

                   Благодаря наличию потока информации клетка создает организацию, соответствующую критериям живого, сохраняет и поддерживает эту организацию во времени, не смотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвует ядро, макромолекулы, переносящие информацию в цитоплазму, цитоплазматический аппарат транскрипции. На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуру и используются в качестве катализаторов или структурных белков. Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют т.ж. геномы митохондрий.

                   Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспечения – брожением, фото- или хемосинтезом, дыханием. Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокалорийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. Особенностью потока энергии растительной клетки служит фотосинтез – механизм преобразования энергии солнечного света в энергию химических связей орг-их в-тв.

                   Поток вещества – реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими служат многие продукты расщепления пищеварительных веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена – циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов большинства соединений, служащих промежуточными продуктами синтеза хим-их компонентов кл, а т.ж. переключение метаболизма клетки с одного преобладающего пути ну другой, например, с углеводного на жировой. Т.о., дых-ый обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.

                   Потоки информации, энергии и веществ осуществляются непрерывно и составляют необходимое условие существования клетки как живой системы.


Дата добавления: 2019-02-12; просмотров: 323; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!