Характеристика двигательных (локомоторных) качеств
К основным двигательным качествам относятся: сила, быстрота, выносливость, гибкость и ловкость. А.А. Тер-Ованесян к названным качествам добавляет: устойчивость равновесия, способность к произвольному расслаблению мышц, ритмичность, прыгучесть, мягкость движений, координированность.
Механика мышечного сокращения. В покое мышечная ткань представляет собой вязкоупругий материал с самыми обычными свойствами (F. Buchthal, Е. Kaiser, 1951; P.M. Rack, 1966). Подлинно интересное свойство мышцы — это ее способность к сокращению. Максимальная сила, которую может развить мышца, при оптимальной ее длине составляет около 2 • 106 дин на 1 см2 поперечного сечения мышцы.
Если противодействующая сила невелика, мышца не только сильнее укорачивается, но и быстрее сокращается. Если сокращающаяся мышца имеет длину l в момент времени t, то скорость ее укорочения: («минус» означает уменьшение длины) определяется по формуле:
где F — сила, которую преодолевает мышца, F1 — максимальная сила мышцы при той длине, при которой измеряется скорость ее укорочения, d и b — константы. Константа d равна около 4 • 105 дин на 1 см2 поперечного сечения мышцы, а константа b для разных мышц различна (A.N. Hill, 1956). Заметим, что даже при отсутствии силы, противодействующей сокращению, мышца укорачивается с ограниченной скоростью: если F = 0, то
Если неподвижно закрепить концы мышцы и заставить ее сокращаться, то максимальная сила сокращения будет зависеть от расстояния между концами мышцы. Эта сила уменьшится, если расстояние будет меньше длины мышцы в покое. Сила сокращения уменьшается и в том случае, если расстояние между концами мышцы будет больше ее длины в покое. Под силой сокращения имеется в виду разность между общей силой, которую развивает мышца при ее раздражении, и упругой восстанавливающей силой, обусловленной растяжением мышцы сверх ее нормальной длины.
|
|
Зависимость силы от длины было показано на изолированных поперечнополосатых мышечных волокнах (Edman К., 1966; Gordon A.M. et at, 1966).
Поперечные полосы мышечного волокна раздвигаются при его растяжении и сближаются при сокращении. На рис. 14.3 приведен график зависимости между силой сокращения волокна и расстояниями между соседними полосами. В расслабленных волокнах эти расстояния равны 2,1 мк (1 мк = 10-4 см). Сила сокращения достигает максимума при расстоянии 2,0—2,2 мк, и эта сила принята за 100%. При расстояниях 1,3 и 3,7 мк сила равна нулю. Это можно объяснить на основании «теории скользящих нитей».
Рис. 14.3. Зависимость силы сокращения поперечнополосатого
мышечного волокна от расстояния между соседними пластинками
(A.M. Gordon et al., 1966)
|
|
Поперечнополосатое мышечное волокно представляет собой клетку, содержащую многочисленные фибриллы, которые сами имеют поперечную исчерченность. На рис. 14.4 представлена схема строения фибриллы, основанная на электронных микрофотографиях. Фибрилла состоит из продольных нитей, построенных из белков актина и миозина; нити актина входят своими концами в промежутки между нитями миозина. Эти нити образуют структуру, которая повторяется на всем протяжении волокна и лежит в основе поперечной исчерченности, видимой в обычный микроскоп. Нити актина — более тонкие, они лежат на участке b(см. рис. 14.4). Они проходят сквозь поперечные перегородки, называемые пластинками.
Рис. 14.4. Схема расположения субмикроскопических нитей в поперечнополосатом мышечном волокне (A.M. Gordon et al., 1966)
Миозиновые нити (рис. 14.4, а) толще и снабжены боковыми выступами, которые прикрепляются к нитям актина, образуя мостики. Полагают, что именно благодаря этим мостикам мышцы развивают силу при сокращении. Посередине каждой нити миозина имеется участок (рис. 14,4, с), лишенный боковых выступов.
Когда мышца сокращается или подвергается растяжению, нити актина и миозина скользят друг относительно друга, так что область их перекрывания становится длиннее или короче.
|
|
На рис. 14.5, показано, как изменяются пространственные отношения нитей при различных расстояниях между соседними пластинками Z (т. е. при различной плотности расположения поперечных полос). Эти расстояния для представленных здесь случаев I—VI указаны также стрелками с соответствующими цифрами на рис. 14.3. При расстоянии 3,65 мк (положение Г) нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу; и действительно, примерно при таком растяжении сила сокращения падает до нуля. По мере сближения пластинок Z нити актина все глубже проникают в промежутки между нитями миозина, и, наконец, при расстоянии 2,2 мк (положение II) все боковые выступы на миозиновой нити приходят в контакт с нитью актина, образуя поперечные мостики. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональная степени перекрывания нитей, и это подтверждается в исследованиях. При дальнейшем укорочении волокна число мостиков, которые могут образоваться, не изменяется, и сила остается постоянной, пока расстояние между пластинками Z не уменьшится до 2,05 мк (положение III). В этот момент нити актина сходятся своими концами и сила начинает убывать. Она продолжает медленно убывать, пока расстояние не достигает 1,65 мк (положение V), когда концы миозиновых нитей приходят в соприкосновение с пластинками Z. При дальнейшем сокращении нити миозина должны сминаться; сила начинает убывать быстрее и, наконец, совсем исчезает.
|
|
Рис. 14.5. Схема, показывающая степень перекрывания нитей миозина
и актина в поперечнополосатом мышечном волокне при различных расстояниях между соседними пластинками Z (A.M. Gordon et al., 1966)
Сила. Силовые качества
Силойназывается физическая величина, характеризующая взаимодействие тел; она определяет изменение движения тела, или изменение формы тела, или то и другое вместе.
Сила, развиваемая мышцей или пучком мышечных волокон, соответствует сумме сил отдельных волокон. Чем толще мышца и больше «физиологическая» площадь ее поперечного сечения (сумма площадей поперечных сечений отдельных волокон), тем она сильнее. Например, при мышечной гипертрофии ее сила и толщина волокон возрастают в одинаковой степени.
Мышечная сила зависит не только от активирующего влияния ЦНС, но и в очень высокой степени от внешних механических условий работы мышцы.
В организме человека скелетные мышцы передают силу частям скелета посредством упругих, отчасти растяжимых структур — сухожилий. Во время развития силы у мышцы есть тенденция укоротиться, а следовательно, растянуть и напрячь упругие структуры, прикрепляющие ее к скелету.
Рис. 14.6. Саркоплазматический ретикулум и Т-трубки.
Миозиновые (толстые) и актиновые (тонкие) нити в состоянии покоя (А), сокращения (Б) и растяжения (S). Укорочение мышцы при ее сокращении связано со скольжением актиновых нитей (Г). Прикрепление поперечных миозиновых мостиков к нитям актина. Благодаря этим мостикам, большинство которых участвует в процессе сокращения, активные нити скользят по направлению к центру саркомера, что приводит к укорочению мышцы (2 и 3). Д — поперечный разрез через A- и I-диски (электронная микроскопия); видна толстая миозиновая нить, окруженная шестью тонкими актиновыми
Мышечное сокращение, при котором длина мышцы уменьшается по мере увеличения развиваемой ею силы, называемой ауксотоническим (изотоническим). Максимальная сила в ауксотонических экспериментальных условиях (с растяжимой упругой связью между мышцей и датчиком силы) называется максимумом ауксотонического сокращения. Она гораздо меньше силы, развиваемой мышцей при постоянной длине, т. е. при изометрическом сокращении. Для его экспериментального исследования мышцу в расслабленном состоянии (в покое) закрепляют с обоих концов, чтобы во время активации и измерения напряжения она не могла укорачиваться. Однако даже в этих условиях сократительные элементы мышечных волокон (миозиновые головки) передают силу сухожилиям или регистрирующему устройству только через упругие внутримышечные структуры. Они входят в состав поперечных мостиков (рис. 14.6) активных нитей, Z- пластинок и сухожильно-мышечных соединений.
Сила — величина векторная. Две силы, действующие на тело, складываются по правилу параллелограмма (векторно).
Сила мышц измеряется тем максимальным напряжением, которое она способна развить в условиях изометрического сокращения.
Максимальная сила будет зависеть прежде всего от количества и толщины мышечных волокон, образующих мышцу. Количество и толщина мышечных волокон обычно определяются по физиологическому поперечнику мышцы, под которым понимается площадь поперечного разреза мышцы (см2), проходящего через все мышечные волокна. Толщина мышцы не всегда совпадает с ее физиологическим поперечником. Например, при равной толщине, мышцы с параллельным и перистым расположением волокон значительно отличаются по физиологическому поперечнику. Перистые мышцы имеют больший поперечник и обладают большей силой сокращения. Чем толще мышца, тем она сильнее.
Важным в проявлении силы мышцы имеет характер прикрепления ее к костям и точка приложения силы в механических рычагах, образуемых мышцами, суставами и костями. Сила мышцы в значительной степени зависит от ее функционального состояния — возбудимости, лабильности и питания. Внутримышечная координация связана со степенью синхронности сокращения двигательных единиц мышцы, а межмышечная — со степенью координированности участвующих в работе мышц. Чем выше степень внутри- и межмышечной координации, тем больше максимальная
сила человека. Спортивные тренировки значительно способствуют совершенствованию этих координационных механизмов, поэтому тренированный человек обладает большей максимальной и относительной силой, т. е. силой мышц, отнесенной на 1 кг массы тела.
В этой связи в спорте имеются весовые категории (тяжелая атлетика, борьба, бокс и др.).
Регуляция мышечной силы в организме человека. Двигательная единица состоит из одного мотонейрона и группы иннервируемых им мышечных волокон (рис. 14.7). Размеры таких единиц широко варьируют. Поскольку каждое волокно подчиняется закону «все или ничего», сила, развиваемая двигательной единицей при одиночном сокращении, варьирует слабо; либо все ее волокна возбуждаются и сокращаются, либо все расслаблены. Однако развиваемая сила зависит от частоты стимуляции.
Рис. 14.7. Схема строения нейромоторной единицы:
а — тело двигательной нервной клетки; б — двигательное нервное волокно, в — его разветвление, г— нервно-мышечное окончание, д — мышечные волокна, иннервируемые данной нервной клеткой, е — мышечные волокна, иннервируемые другими нервными клетками
Сила и скорость сокращения мышцы увеличиваются также по мере активации (вовлечения) все большего количества двигательных единиц. При этом чем меньше размеры (а, следовательно, и сила) каждой из них, тем тоньше регулировка общего усилия.
Соотношение между скоростью сокращения мышцы и силой (нагрузкой). При изотоническом сокращении мышца укорачивается тем медленнее, чем больше нагрузка.
Ненагруженная мышца укорачивается с максимальной скоростью, зависящей от типа мышечных волокон. Например, портняжная мышца лягушки сокращается со скоростью всего лишь 0,2 м/с (примерно, 10 длин мышцы в 1с). Мышцы руки человека, которые гораздо длиннее, укорачиваются со скоростью 8 м/с. Быстро укорачиваясь, мышца развивает меньшую силу, чем при медленном укорочении или после предварительного растяжения. Этим объясняется тот общеизвестный факт, что быстрые движения возможны, если не требуется большая сила, т. е. когда мышцы не нагружены (свободно двигаются) и, наоборот, максимальная мышечная сила требует медленных движений, например, при передвигании крупных предметов или подъеме штанги. Большой вес можно поднять или столкнуть с места только очень медленно. Это вполне совместимо со способностью человека произвольно менять скорость мышечного сокращения.
Мощность мышцы равна произведению развиваемой ею силы на скорость укорочения. Например, максимальная мощность (200 Вт) мышцы нашей руки будет достигнута при скорости сокращения 2,5 м/с. Исследования показывают, что мощность выше при умеренных нагрузках и скоростях сокращения, чем в экстремальных условиях.
Развитие силы и ее измерение
Сила — это способность человека преодолевать внешнее сопротивление или противодействовать ему за счет мышечных усилий. Под силой мышц подразумевают способность развивать в них (при максимальном усилии) напряжение той или иной величины. Силу мышц измеряют с помощью различных приборов (динамометры и др.). А. Беком определена «удельная сила мышцы» (табл. 14.1).
Для сравнения силы у людей разного веса и пола введено понятие «относительная сила» (отношение максимальной силы к весу).
Таблица 14.1
Удельная сила различных мышц
Наименование | Сила мышцы (кг) на 1 см2 физиологического поперечника |
Икроножная с камбаловидной | 6,24 |
Разгибатели шеи | 9,0 |
Жевательная | 10,0 |
Двуглавая мышца плеча | 11,4 |
Трехглавая мышца плеча | 16,8 |
Сила мышц зависит от многих факторов. При прочих равных условиях она пропорциональна поперечному сечению мышц (принцип Вебера). Максимально возможное ее сокращение (укорочение) при прочих равных условиях пропорционально длине мышечных волокон (принцип Бернулли).
В зависимости от вида спорта, спортсмены отдают предпочтение развитию тех мышечных групп, от которых в значительной мере зависит эффективность выполнения упражнений.
Например, у тяжелоатлетов высокий уровень развития силы мышц-сгибателей. У квалифицированных тяжелоатлетов отношение силы мышц-разгибателей к силе мышц-сгибателей выражается следующими величинами: для плеча (локтевой сустав) — 1,6: 1, туловища (тазобедренный и поясничный суставы) — 4,3 : 1, голени (голеностопный сустав) — 5,4 : 1, бедра (коленный сустав) — 4,3 : 1. Именно в этом заключается своеобразие топографии и гармонии развития атлетов.
В тяжелой атлетике силу мышц измеряют в позах, которые спортсмены принимают при подъеме штанги.
Наиболее значительные усилия атлеты затрачивают в фазе подрыва, когда углы в коленных суставах равны 130—140°, а в тазобедренных — около 60—70° и гриф штанги находится у середины бедра. В данном положении спортсмены способны развивать усилие до 500 кг и более (А.Н. Воробьев, 1988).
В спортивной физиологии и педагогике широко распространен термин «взрывная сила», характеризующий предельную быстроту развития напряжения мышц.
Взрывную силу мышц рассчитывают по следующей формуле:
где I — скоростно-силовой индекс; Fmax — максимальное значение силы мышцы в данном движении; t — время достижения максимальной силы мышц.
Косвенным показателем взрывной силы может служить высота и длина прыжка с места при отталкивании двумя ногами.
Дата добавления: 2019-01-14; просмотров: 231; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!