Вероятностные, или статистические законы
Свое название эти законы получили от характера той информации, которая используется для их формулировки и получения заключения из нее. Вероятностными они называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются достоверными и однозначными. Поскольку сама информация при этом носит статистический характер, то часто такие законы называют также статистическими, и этот термин получил в науке значительно большее распространение.
Тем не менее, использование термина "вероятность" для характеристики статистических законов более обоснованно с теоретической точки зрения.
Возникает вопрос: о какой вероятности идет речь в данном случае?
В настоящее время существует по крайней мере три интерпретации этого термина. Первая из них связана с классическим периодом развития теории вероятностей, когда вероятность события определялась как отношение числа случаев, благоприятствующих появлению события, к общему числу всех возможных случаев. Такое определение мы встречаем у одного из основоположников классической теории вероятностей - выдающегося французского математика П. С. Лапласа[1]. С помощью такого определения легко подсчитать вероятности, или шансы, появления события в азартных играх, из анализа которых и появилась сама теория. Однако правила азартных игр специально построены таким образом, чтобы шансы игроков были равновозможными, но в природе и обществе равновозможные события встречаются редко. Поэтому для количественной оценки возможности появления тех или иных событий необходимо было найти другую интерпретацию.
|
|
Со временем ученым действительно удалось найти ее путем сравнения числа появления исследуемого события к общему числу всех наблюдений. Действительно, чем чаще происходит событие, тем выше вероятности его появления при данных условиях наблюдения. Очевидно, что численное значение вероятности при таком определении зависит от количества наблюдений, т. е. от относительной частоты появления события. Поэтому у чем больше сделано наблюдений, тем точнее будет вычислена и вероятность события. Исходя из этого, некоторые ученые предложили, рассматривать вероятность события как предел его относительной частоты при бесконечном числе наблюдений. Поскольку такое количество наблюдений практически осуществить невозможно, то многие теоретики, а особенно практики, решили определять вероятность как отношение числа появления интересующего события к общему числу всех наблюдений, когда количество последних достаточно велико. Эта величина в каждом конкретном случае должна определяться условиями конкретной задачи, т.е. вероятность Р(А) равна:
|
|
Р(А)=т/п,
где т - число появления интересующего события, а п число всех наблюдений.
Указанное определение вероятности называют также частотным, поскольку в нем фигурирует понятие относительной частоты при длительных наблюдениях. Последние анализируются обычно статистическими методами. Очевидно, что при статистической, или частотной, интерпретации нельзя говорить о вероятности отдельного, единичного события, которое не обладает частотой. Поэтому вероятность при такой интерпретации относится к некоторой группе событий. В предыдущей главе мы упоминали, что волновая функция в квантовой механике определяет параметры будущего состояния системы в "среднем", т. е. не указывает, например, определенное значение его координат, а только тот интервал, в котором они могут находиться. Это обстоятельство часто характеризуют термином "вероятностное распределение".
Частотная, или статистическая, интерпретация вероятности получила наиболее широкое применение в естественных и технических науках, а в последние десятилетия также в социальном и гуманитарном познании. Это осеняется прежде всего тем, что реальные процессы в основном состоят из большого количества элемент, связи между которыми имеют сложный характер щ которых немалую роль играют случайные факторы, от которых нельзя отвлечься, как это делают в классической механике. Тем не менее, и для характеристики таких процессов можно найти некоторые регулярности, которые дают возможность строить вероятностные прогнозы их будущего поведения.
|
|
Самое главное применение частотная интерпретация вероятности находит при открытии и анализе статистических законов. Всюду, где мы встречаемся с массовыми случайными или повторяющимися событиями, при тщательней исследовании можно обнаружить, что все они, несмотря на отклонения и разнообразие в своем поведении, обладают определенной регулярностью, а именно: устойчивой относительной частотой. Эта закономерность была давлена еще в античном мире на примере относительны устойчивости количества рождающихся за год мальчиков и девочек. Впоследствии были найдены другие статистические законы в физике, биологии, демографии, страховом деле, социальной статистике и т. д.
Как относились к статистическим законам в классической науке? Признавались ли они в качестве постоянных методов исследования наравне с универсальными законами или считались временными средствами познания' используемыми для удобства, пока не будут найден подлинные законы?
|
|
На этот вопрос можно ответить вполне однозначно: статистические законы не считались подлинными законами, так как ученые прошлого века предполагали, что за ними должны стоять такие же универсальные законы, как закон всемирного тяготения Ньютона, который считался образцом детерминистского закона, поскольку он обеспечивает точные и достоверные предсказания приливов и отливов, солнечных и лунных затмений и других явлений природы.
Статистические же законы признавались в качестве удобных вспомогательных средств исследования, дающих возможность представить в компактной и удобной форме всю имеющуюся информацию о каком либо предмете исследования. Типичным примером может служить информация, получаемая посредством переписи населения. В принципе мы можем получить о каждом гражданине страны все необходимые сведения, но когда они классифицируются по отдельным пунктам, сводятся в отдельные показатели и обобщаются, то работать с такой информацией значительно удобнее и легче. Статистические законы и теоретические обобщения, найденные в физике, биологии, экономике, социологии, праве и других науках, также рассматривались в качестве удобного вспомогательного средства для описания, систематизации и обобщения найденного эмпирического материала. По-видимому, главная причина такого отношения к статистическим законам состояла в том, что заключения их недостоверны, неопределенны, а лишь вероятны в той или иной степени, причем эта степень существенно зависела от количества наблюдений и экспериментов.
В связи с этим подлинными законами считались именно детерминистские законы, обеспечивающие точные и достоверные предсказания. Эта терминология сохранилась до настоящего времени, когда статистические, или вероятностные, законы квалифицируются как индетерминистские, с чем вряд ли можно согласиться. Единственное, что здесь верно, - это качественное различие между двумя типами законов: универсальными и статистическими. В то же время между ними существуют и глубокая общность, и единство, заключающиеся в том, что все они отображают определенные регулярности в природе и обществе. Опираясь на эти регулярности, мы можем успешнее действовать в окружающем нас мире случайностей и неопределенностей, поскольку законы устанавливают некоторые запреты и тем самым уменьшают количество возможных выборов или альтернатив действия.
Отношение к статистическим законам принципиально изменилось после открытия законов квантовой механики, предсказания которых имеют существенно вероятностный характер. Попытка найти некие скрытые параметры, с помощью которых можно было бы свести статистические законы к строго детерминистским законам, подобным законам классической механики, не увенчалась успехом. По-видимому, принцип неопределенности Гейзенберга не дает возможности осуществить это.
Дата добавления: 2018-11-24; просмотров: 335; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!