Глава 6. Концепция необратимости и термодинамика
Рассматривая законы движения в классической и квантовой механике, мы не обращали внимания на характер времени, посредством которого описываются процессы изменения в этих теориях. Время в них выступало в качестве особого параметра, знак которого можно менять на обратный. Действительно, если заданы начальное состояние системы, т.е. начальные ее координаты и импульсы, и известны уравнения движения, то в механике можно вполне однозначно определить любое ее состояние как в будущем, так и прошлом.
Следовательно, направление времени никак не учитывается в классической механике. То же самое следует сказать о квантовой механике, хотя в ней предсказания имеют лишь вероятностный характер. Такое представление о времени противоречит как повседневной нашей практике, так и тем теоретическим воззрениям, которые установились в естественных науках, изучающих конкретные изменения явлений во времени (история, геология, палеонтология, биология и др.). Если классическая физика и особенно механика изучали обратимые процессы, то биологические, социальные и гуманитарные науки ясно показывали, что предметом их исследования служат процессы необратимые, изменяющиеся во времени и имеющие свою историю.
Наиболее резкое противоречие в прошлом веке возникло между прежней физикой и эволюционной теорией Дарвина. Если, например, в механике все процессы представляются обратимыми, лишенными своей истории и развития, то теория Дарвина убедительно доказала, что новые виды растений и животных возникают в ходе эволюции в результате борьбы за существование. В этой борьбе выживают те организмы, которые оказываются лучше приспособленными к изменившимся условиям окружающей среды. Следовательно, в живой природе все процессы являются необратимыми. То же самое можно сказать в принципе и о социально-экономических, культурно-исторических и гуманитарных системах, хотя эволюция в природе происходит значительно медленнее, чем в обществе.
|
|
Физика приближалась к разрешению указанного выше противоречия через пересмотр и создание ряда промежуточных концепций, одной из которых является идея об эволюции систем, но не в сторону усиления их организации и сложности, а напротив, - в сторону дезорганизации и разрушения систем.
Понятие времени в классической термодинамике
До возникновения термодинамики понятие времени по существу отсутствовало в классической физике в том виде, в каком оно рассматривается в реальной жизни и в науках, изучающих процессы, протекающие во времени и имеющих свою историю. Хотя в качестве переменной время входит во все уравнения классической и квантовой механики, тем не менее оно не отражает внутренние изменения, которые происходят в системе. Именно поэтому в уравнениях физики его знак можно менять на обратный, т.е. относить его как будущему, так и к прошлому.
|
|
Положение существенно изменилось после того, как физика вплотную занялась изучением тепловых процессов, законы которых были сформулированы в классической термодинамике. Если прежняя динамика описывала законы движения тел под воздействием внешних сил, сознательно отвлекаясь от внутренних изменений, происходящих в механических системах, то термодинамика вынуждена была исследовать физические процессы при различных преобразованиях тепловой энергии. Однако она не анализирует внутреннее строение термодинамических систем, как это делает статистическая физика, рассматривающая теплоту как беспорядочное движение огромного числа молекул.
Термодинамика возникла из обобщения многочисленных фактов, описывающих явления передачи, распространения и превращения тепла. Самым очевидным является тот факт, что распространение тепла представляет собой необратимый процесс. Хорошо известно, например, что тепло, возникшее в результате трения или выполнения другой механической работы, нельзя снова превратить в энергию и потом использовать для производства работы. Не менее известно, что тепло передается от горячего тела к холодному, а не наоборот.
|
|
С другой стороны, путем точных экспериментов было доказано, что тепловая энергия превращается в механическую энергию в строго определенных количествах. Существование такого механического эквивалента для теплоты свидетельствовало о ее сохранении. Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах классической термодинамики:
Если к системе подводится тепло Q и над ней производится работа W, то энергия системы возрастает до величины U: U= Q + W. |
Эту энергию называют внутренней энергией системы, и она показывает, что тепло, полученное системой, не исчезает, а затрачивается на увеличение внутренней энергии и производство работы, т. е. Q = U-W.
Процесс, единственным результатом которого было бы изъятие тепла из резервуара, невозможен. |
Приведенные формулировки отражают связи, которые существуют между тепловой энергией и полученной за ее счет работой. В первом законе речь идет о сохранении энергии, во втором - о невозможности производства работы исключительно за счет изъятия тепла из одного резервуара при постоянной температуре. Например, нельзя произвести работу за счет охлаждения озера, моря или иного резервуара при установившейся температуре. Таким образом, второй закон, или начало термодинамики, можно сформулировать проще, как впервые это сделал французский ученый Сади Карно (1796-1832).
|
|
Невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре. |
Иногда этот закон выражают в еще более простой форме:
Тепло не может перетечь самопроизвольно от холодного тела к горячему. |
В дальнейшем немецкий физик Рудольф Клаузиус (1822-1888) использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Людвиг Больцман (1844- 1906) интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон термодинамики постулирует:
Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением на энергией ни веществом, постоянно возрастает. |
А это означает, что такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.
Поскольку об изменении систем в классической термодинамике мы можем судить по увеличению их энтропии, то последняя и выступает в качестве своеобразной стрелы времени. В механических процессах ни о каком реальном времени говорить не приходится. Задав в них начальное состояние (координаты и импульсы), можно, согласно уравнениям движения, однозначно определить любое другое ее состояние в будущем или прошлом. Поэтому время в них выступает просто как параметр, знак которого можно менять на обратный, и таким образом вернуться к первоначальному состоянию системы. Ничего подобного не встречается в термодинамических процессах, которые являются необратимыми по своей природе.
Термодинамика впервые ввела в физику понятие времени в весьма своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной промежуток прошла система в своей эволюции.
Очевидно, что такое понятие о времени и особенно об эволюции системы коренным образом отличается от понятия эволюции, которое лежало в основе теории Дарвина. В то время как в дарвиновской теории происхождения новых видов растений и животных путем естественного отбора эволюция направлена на выживание более совершенных организмов и усложнение их организации, в термодинамике эволюция связывалась с дезорганизацией систем. Это противоречие оставалось неразрешенным вплоть до 60-х гг. нашего века, пока не появилась новая, неравновесная термодинамика, которая опирается на концепцию необратимых процессов.
Классическая термодинамика оказалась неспособной решить и космологические проблемы характера процессов, происходящих во Вселенной. Первую попытку распространить законы термодинамики на Вселенную предпринял один из основателей этой теории - Р. Клаузиус, выдвинувший два постулата:
• энергия Вселенной всегда постоянна;
• энтропия Вселенной всегда возрастает. Если принять второй постулат, то необходимо признать, что все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых и философов, но в середине прошлого века было еще мало научных аргументов для опровержения мнения Р. Клаузиуса и обоснования альтернативного взгляда. Некоторые авторы предполагали, что наряду с энтропийными процессами в природе происходят антиэнтропийные процессы, которые препятствуют наступлению "тепловой смерти" во Вселенной. Другие высказывали сомнение в правомерности распространения понятий термодинамики, в частности энтропии, с отдельных систем на Вселенную в целом. Но только единицы догадывались, что само понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.
Дата добавления: 2018-11-24; просмотров: 406; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!