Конструктивные методы лазерных комплексов хирургического назначения



Введение

 

Лазерная хирургия применяется практически во всех сферах медицины. Благодаря этому методу открылись новые возможности в хирургии и микрохирургии. Он приемлем как для врачей, так и для пациентов, поскольку эффективен, безболезнен, антисептичен, не имеет возрастных ограничений и побочных явлений.

Длительность сеанса лазеротерапии составляет до 30 минут, проводят его 1 раз в сутки, а продолжительность курса зависит от цели лечения. Дозу и мощность воздействия определяет врач, он же в течение всего курса следит за состоянием пациента и за возможными реакциями на лазерное воздействие. После каждой процедуры больному необходимо 30 минут отдыха.

Лазерный луч оказывает свое воздействие на молекулярном, клеточном, тканевом и органном уровне, восстанавливая функциональную активность, метаболизм, микроциркуляцию и саморегуляцию. Противовоспалительное, десенсибилизирующее, болеутоляющее, спазмолитическое, противоотечное и регенерирующее действие лазера позволяет применять этот метод во всех областях медицины.

В хирургии лазеру «под силу» не только тончайшие манипуляции на глазном яблоке и в легких. С помощью такого «скальпеля» можно распилить кость, например при ампутации конечности и т.д. Лазерный луч сделал реальностью точное и быстрое выполнение различных операций, притом без крови, практически без боли и без опасности инфицирования. В офтальмологии и микрохирургии применяются «световые скальпели» тоньше волоса. Благодаря высокой технологии стали доступны такие хирургические вмешательства, о которых предшественники современных хирургов и мечтать не могли.

Способы и методы лазерной хирургии

 

Номенклатура выпускаемых аппаратов обширна и разнообразна. Одни предназначены для работы в специализированных кабинетах, другие - в кабинетах широкого профиля (для физиотерапевтических целей).

В зависимости от своей мощности лазерный луч оказывает различное воздействие на ткани организма человека. Так, в хирургии используют высокоинтенсивные установки (десятки ватт и выше), а в терапии - низкоэнергетическое излучение, мощность которого измеряется милливаттами. Есть лазерные установки с непрерывным и импульсным излучением, гелий-неоновые и инфракрасные. Гелий-неоновые используют для поверхностного воздействия, инфракрасные импульсные - для воздействия на глубоко расположенные ткани и органы, их не применяют для акупунктуры.

По способу воздействия лазеротерапию можно разделить на чрезкожную, внутриорганную, внутрисосудистую, внутритканевую и лазеропунктуру.

Наиболее часто применяют чрезкожную хирургию - воздействие на органы и ткани, а также рефлексогенные зоны через поверхность кожи.

При внутри органной лазеротерапии лечение осуществляется внутри больного органа с помощью фиброгастроскопа (при язвенной болезни) или бронхоскопа (бронхиальной астме, эмфиземе легких и т.д.).

Внутрисосудистое облучение назначают как вспомогательный метод для лечения заболеваний, связанных с нарушением кровообращения (инфаркт миокарда, ишемическая болезнь сердца, диабетическая ангиопатия). Либо световод проводят через катетер в вену, либо проводят наружное облучение сосудов.

Внутритканевая терапия показана при заболеваниях опорного аппарата, когда возникает необходимость глубокого проникновения луча в пораженный орган.

А вот лазеропунктуру применяют не только для лечения, но и для профилактики многих заболеваний. Принципы у нее те же, что и при акупунктуре, но метод совершенно безболезненный и не требует стерилизации игл, так как вместо них используют лазерный луч.

За период своего существования лазеротерапия все время пополняет модификации, средства наведения луча, системы контроля и управления. В последнее время этот метод превратился в полностью автоматизированную процедуру. Недалеко и то время, когда при помощи новых технологий врачи смогут осуществить давнюю мечту - избирательно влиять на клетки и ткани на молекулярном уровне

 

Конструктивные методы лазерных комплексов хирургического назначения

 

Для целей хирургии луч лазера должен быть достаточно мощным, чтобы нагревать биоткань выше 50 - 70 °С, что приводит к ее коагуляции, резанию или испарению. Поэтому в лазерной хирургии, говоря о мощности лазерного излучения того или иного аппарата, оперируют цифрами, обозначающими единицы, десятки и сотни Вт.

Хирургические лазеры бывают как непрерывные, так и импульсные, в зависимости от типа активной среды. Условно их можно разделить на три группы по уровню мощности:

Коагулирующие: 1 - 5 Вт,

Испаряющие и неглубоко режущие: 5 - 20 Вт,

Глубоко режущие: 20 - 100 Вт.

Конечно, это деление в значительной степени условно, т.к. длина волны излучения и режим работы очень сильно влияют на требования по выходной мощности хирургического лазера.

В лазерной хирургии применяются достаточно мощные лазеры, работающие в непрерывном или импульсном режиме, которые способны сильно нагревать биоткань, что приводит к ее резанию или испарению (см. Свойства хирургических лазеров).

Лазеры обычно именуются по типу активной среды, генерирующей лазерное излучение. Наиболее известны в лазерной хирургии неодимовый лазер и лазер на углекислом газе (или СО2-лазер).

Мы приведем здесь лишь краткий обзор лазеров используемых в хирургии.

Более подробно с различными типами лазеров и их физическими характеристиками вы можете ознакомиться в монографии "Гольмиевый лазер в медицине" СО2-лазер, модель 315М

СО2 - лазер

Лазер на углекислом газе - это первый хирургический лазер, который активно используется с 1970-х годов по настоящее время.

Высокое поглощение в воде и органических соединениях (типичная глубина проникновения 0,1 мм) делает СО2-лазер подходящим для широкого спектра хирургических вмешательств, в том числе для гинекологии, оториноларингологии, общей хирургии, дерматологии, кожно-пластической и косметической хирургии.

Поверхностное воздействие лазера позволяет иссекать биоткань без глубокого ожога. Это также делает CO2-лазер не опасным для глаз, т.к. излучение не проходит сквозь роговицу и хрусталик.

Конечно, мощный направленный луч может повредить роговицу, но для защиты достаточно иметь обычные стеклянные или пластиковые очки.

Недостаток длины волны 10 мкм состоит в том, что очень трудно изготовить подходящее оптическое волокно с хорошим пропусканием. И до сих пор наилучшим решением является зеркальный шарнирный манипулятор, хотя это достаточно дорогое устройство, сложное в юстировке и чувствительное к ударам и вибрации.

Другим недостатком CO2-лазера - это его непрерывный режим работы. В хирургии для эффективного резания необходимо быстро испарять биоткань без нагрева окружающих тканей, для чего нужна высокая пиковая мощность, т.е. импульсный режим. Сегодня в CO2-лазерах для этих целей применяют так называемый "суперимпульсный" режим (superpulse), при котором лазерное излучение имеет вид пачки коротких, но в 2 - 3 раза более мощных импульсов, по сравнению со средней мощностью непрерывного лазера.

Неодимовый лазер - это самый распространенный тип твердотельного лазера и в промышленности, и в медицине.

Его активная среда - кристалл алюмоиттриевого граната, активированного ионами неодима Nd:YAG, - позволяет получить мощное излучение в ближнем ИК-диапазоне на длине волны 1,06 мкм практически в любом режиме работы с высоким КПД и с возможностью волоконного выхода излучения.

Поэтому вслед за CO2-лазерами в медицину пришли неодимовые как для целей хирургии, так и терапии.

Глубина проникновения такого излучения в биоткани равна 6 - 8 мм и довольно сильно зависит от ее типа. Это означает, что для достижения такого же режущего или испаряющего эффекта, как у CO2-лазера, для неодимового требуется в несколько раз более высокая мощность излучения. А во-вторых, происходит значительное повреждение подлежащих и окружающих лазерную рану тканей, что отрицательно сказывается на послеоперационном ее заживлении, вызывая различные осложнения, типичные для ожоговой реакции - рубцевание, стеноз, стриктура и т.п.

Предпочтительная сфера хирургического применения неодимового лазера - это объемная и глубокая коагуляция в урологии, гинекологии, онкологические опухоли, внутренние кровотечения и т. п. как в открытых, так и в эндоскопических операциях.

Важно помнить, что излучение неодимового лазера невидимо и опасно для глаз даже в малых дозах рассеянного излучения.

Использование в неодимовом лазере специального нелинейного кристалла КТР (калий-титан-фосфат) позволяет удваивать частоту излучаемого лазером света. Получаемый таким образом КТР-лазер, излучающий в видимой зеленой области спектра на длине волны 532 нм, обладает способностью эффективно коагулировать кровенасыщенные ткани и используется в сосудистой и косметической хирургии.

Гольмиевый лазер

Кристалл алюмоиттриевого граната, активированный ионами гольмия, - Ho:YAG, способен генерировать лазерное излучение на длине волны 2,1 мкм, которое хорошо поглощается биотканью. Глубина его проникновения в биоткань составляет около 0,4 мм, т.е. сравнима с CO2-лазером. Поэтому гольмиевый лазер обладает применительно к хирургии всеми преимуществами СО2-лазера.

Но двухмикронное излучение гольмиевого лазера в то же время хорошо проходит через кварцевое оптическое волокно, что позволяет использовать его для удобной доставки излучения к месту хирургического вмешательства. Это особенно важно, в частности, для проведения малоинвазивных эндоскопических операций.

Излучение гольмиевого лазера хорошо коагулирует сосуды размером до 0,5 мм, что вполне достаточно для большинства хирургических вмешательств. Двухмикронное излучение, к тому же, вполне безопасно для глаз.

Типичные выходные параметры гольмиевого лазера: средняя выходная мощность 5 - 100 Вт, максимальная энергия излучения - до 6 Дж, частота повторения импульсов - до 40 Гц, длительность импульса - около 500 мкс.

Сочетание физических параметров излучения гольмиевого лазера оказалось оптимальным для целей хирургии, что позволило ему найти многочисленные применения в самых различных областях медицины

Эрбиевый лазер

Эрбиевый (Er:YAG) лазер имеет длину волны излучения 2,94 мкм (средний ИК-диапазон). Режим работы - импульсный.

Глубина проникновения в биоткань излучения эрбиевого лазера составляет не более 0,05 мм (50 мкм), т.е. его поглощение еще в 5 - 10 раз выше, чем у CO2-лазера, и он оказывает исключительно поверхностное воздействие.

Такие параметры практически не позволяют коагулировать биоткань.

Основные направления применения эрбиевого лазера в медицине:

- микрошлифовка кожи,

- перфорация кожи для взятия проб крови,

- испарение твердых тканей зуба,

- испарение поверхности роговицы глаза для исправления дальнозоркости.

Излучение эрбиевого лазера неопасно для глаз, как и у CO2-лазера, и для него также нет надежного и дешевого волоконного инструмента.

Диодный лазер

В настоящее время существует целая гамма диодных лазеров, имеющих широкий спектр длин волн от 0,6 до 3 мкм и параметров излучения. Основными достоинствами диодных лазеров являются высокий КПД (до 60%), миниатюрность и большой ресурс работы.

Типичная выходная мощность одиночного диода редко превышает 1 Вт в непрерывном режиме, а энергия импульса - не более 1 - 5 мДж.

Для получения мощности, достаточной для хирургии, одиночные диоды объединяют в наборы, состоящие от 10 до 100 элементов, расположенные в виде линейки, или к каждому диоду присоединяют тонкие волокна, которые собирают в жгут. Такие композитные лазеры позволяют получать 50 Вт и более непрерывного излучения на длине волны 810 - 960 нм, которые сегодня применяются в гинекологии, офтальмологии, косметологии и др.

Основной режим работы диодных лазеров - непрерывный, что ограничивает возможности их использования в лазерной хирургии. При попытках реализовать суперимпульсный режим работы чересчур длинные импульсы (порядка 0,1 с) на длинах волн генерации диодных лазеров в ближнем ИК-диапазоне рискуют вызвать чрезмерный нагрев и последующее ожоговое воспаление окружающих тканей.

Длина волны излучения гольмиевого лазера равна 2,09 мкм. Коэффициент поглощения в воде составляет 40 см-1. Лазерное излучение проникает в мягкие биоткани на глубину около 0,4 мм, причем мало зависит от васкуляризации ткани.

Это означает, что воздействие на прилежащие ткани будет незначительным и не следует опасаться нежелательных обширных сопутствующих ожогов и сильного некроза вокруг лазерной раны.

Кварцевое стекло прозрачно на длине волны излучения гольмиевого лазера, что дает возможность использовать тонкое гибкое кварцевое оптическое волокно для доставки излучения гольмиевого лазера к объекту воздействия.

Режим работы гольмиевого лазера - импульсный, длительность импульса:- 300 - 600 мкс. Частота повторения импульсов может изменяться в диапазоне от 1 до 20 Гц. Энергия импульса варьируется до 3 Дж при средней мощности выходного излучения 20 - 30 Вт.

Импульсный режим значительно уменьшает время нагрева биоткани, и, следовательно, ожоговую реакцию организма. При этом пиковая мощность излучения в 5 - 10 кВт дает возможность быстро испарять ткань практически без фазы медленного нагрева. В физике такой процесс называется адиабатическим, т.е. без теплообмена с окружающими телами.

Ярко выраженные вапоризующие свойства гольмиевого лазера позволяют его использовать для испарения новообразований различной локализации, а также для инцизии и эксцизии биоткани. Производительность зависит от частоты повторения и энергии импульса лазерного излучения.

СО2 - лазер фирмы "IRRADIA", модель 315М, обладает следующим набором уникальных параметров:

· Исключительная компактность

· Срок службы лазерной трубки более 10.000 часов

· Легкость транспортировки.

· Лазер 315М без труда переносится одним человеком.

· Шарнирный манипулятор частично располагается внутри лазера

· Имеет аккумуляторную батарею.

· Выходная мощность не зависит от колебаний напряжения сети питания вплоть до ее полного отсутствия в течение нескольких часов

· Механическая прочность и электробезопасность - рабочие напряжения не превышают 32 В

· Простота в управлении

· Бесшумность в работе

Неодимовый лазер с модуляцией добротности "Dermalag"

Неодимовый лазер "Dermalag" с успехом может быть использован для удаления татуировок и пигментных пятен.

· генерация на двух длинах волн: 1064 нм и 532 нм

· выведение косметических дефектов на любом типе кожи

· отсутствие рубцевания

· безболезненность воздействия

· небольшие габариты и вес

· низкие эксплуатационные расходы


Дата добавления: 2018-10-25; просмотров: 164; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!