Стали особовысококачественные



Особовысококачественные стали подвергаются электрошлаковому переплаву, обеспечивающему эффективную очистку от сульфидов и оксидов. Данные стали выплавляются только легированными. Их производят в электропечах и методами специальной электрометаллургии. Содержат не более 0,01% серы и 0,025% фосфора. Например: 18ХГ-Ш, 20ХГНТР-Ш.

Классификация стали по назначению

По назначению стали и сплавы классифицируются на конструкционные, инструментальные и стали с особыми физическими и химическими свойствами.

Конструкционные стали

Конструкционные стали принято делить на строительные, для холодной штамповки, цементируемые, улучшаемые, высокопрочные, рессорно-пружинные, шарикоподшипниковые, автоматные, коррозионно-стойкие, жаростойкие, жаропрочные, износостойкие стали.

Строительные стали

К строительным сталям относятся углеродистые стали обыкновенного качества, а также низколегированные стали. Основное требование к строительным сталям - их хорошая свариваемость. Например: С255, С345Т, С390К, С440Д.

Улучшаемые стали

К улучшаемым сталям относят стали, которые подвергают улучшению - термообработке, заключающейся в закалке и высоком отпуске. К ним относятся среднеуглеродистые стали (35, 40, 45, 50), хромистые стали (40Х, 45Х, 50Х), хромистые стали с бором (ЗОХРА, 40ХР), хромоникелевые, хромокремниемарганцевые, хромоникельмолибденовые стали.

Высокопрочные стали

Высокопрочные стали - это стали, у которых подбором химического состава и термической обработкой достигается предел прочности примерно вдвое больший, чем у обычных конструкционных сталей. Такой уровень прочности можно получить в среднеуглеродистых легированных сталях - таких, как ЗОХГСН2А, 40ХН2МА, ЗОХГСА, 38ХНЗМА, ОЗН18К9М5Т, 04ХИН9М2Д2ТЮ.

Коррозионно-стойкие (нержавеющие) стали

Коррозионно-стойкие (нержавеющие) стали - легированные стали с большим содержанием хрома (не менее 12%) и никеля. Хром образует на поверхности изделия защитную (пассивную) оксидную пленку. Углерод в нержавеющих сталях - нежелательный элемент, а чем больше хрома, тем выше коррозионная стойкость.
Структура для наиболее характерных сплавов этого назначения может быть:

· ферритно-карбидной и мартенситной (12X13, 20X13, 20Х17Н2, 30X13, 40X13, 95X18 - для слабых агрессивных сред (воздух, вода, пар);

· ферритной (15X28) - для растворов азотной и фосфорной кислот;

· аустенитной (12Х18НЮТ) - в морской воде, органических и азотной кислотах, слабых щелочах;

· мартенситно-стареющей (ЮХ17Н13МЗТ, 09Х15Н8Ю) - в фосфорной, уксусной и молочной кислотах.

Сплав 06ХН28МТ может эксплуатироваться в условиях горячих (до 60°С) фосфорной и серной (концентрации до 20%) кислот.
Коррозионностойкие стали и сплавы классифицируют в зависимости от агрессивности среды, в которой они используются, и по их основному потребительскому свойству на собственно коррозионно-стойкие, жаростойкие, жаропрочные и криогенные.

Коррозионно-стойкие стали

Изделия из собственно коррозионностойких сталей (лопатки турбин, клапаны гидравлических прессов, пружины, карбюраторные иглы, диски, валы, трубы и др.) работают при температуре эксплуатации до 550°С.

Жаропрочные стали

Жаропрочные стали способны работать в нагруженном состоянии при высоких температурах в течение определенного времени и при этом обладают достаточной жаростойкостью. Данные стали и сплавы применяются для изготовления труб, клапанных, паро- и газотурбинных деталей (роторы, лопатки, диски и др.).
Для жаропрочных и жаростойких машиностроительных сталей используются малоуглеродистые (0,1-0,45% С) и высоколегированные (Si, Cr, Ni, Со и др.). Жаропрочные стали и сплавы в своем составе обязательно содержат никель, который обеспечивает существенное увеличение предела длительной коррозионной прочности при незначительном увеличении предела текучести и временного сопротивления, и марганец. Они могут дополнительно легироваться молибденом, вольфрамом, ниобием, титаном, бором, иодом и др. Так, микролегирование бором, а также редкоземельными и некоторыми щелочноземельными металлами повышает такие характеристики, как число оборотов при кручении, пластичность и вязкость при высоких температурах.
Рабочие температуры современных жаропрочных сплавов составляют примерно 45-80% от температуры плавления. Эти стали классифицируют по температуре эксплуатации (ГОСТ 20072-74):
при 400-550°С - 15ХМ, 12Х1МФ, 25Х2М1Ф, 20ХЗМВФ;
при 500-600°С - 15Х5М, 40ХЮС2М, 20X13;
при 600-650°С - 12Х18Н9Т, 45Х14Н14В2М, ЮХЦН23ТЗМР,
ХН60Ю, ХН70Ю, ХН77ТЮР, ХН56ВМКЮ, ХН62МВКЮ.

 

Сборка изделия, порядок сборки труб для водопроводов.

 

 

Перед сборкой и сваркой трубы нужно полностью очистить от грунта и грязи, проверить форму кромок и при необходимости выправить их. Выправленные концы труб должны при сборке совпадать. Эллипсность по торцу, вмятииы и забоины не должны превышать величин, допускаемых ГОСТом на поставляемые трубы.

При дуговой сварке необходимо очистить до металлического блеска кромки и прилегающие к ним внутреннюю и наружную поверхности на ширину не менее 10 мм.Стыкуют трубы с помощью центраторов, домкратов и других приспособлений, обеспечивающих взаимное совмещение кромок.В любом случае количество прихваток должно быть не менее трех, их длина должна составлять 60—80 мм, толщина — не менее 4 мм. Стыки сварных труб с односторонними продольными прямыми швами собирают так, чтобы эти швы были смещены относительно друг друга не менее чем на 100 мм. Двусторонние продольные и спиральные швы можно не смещать.

Сборка водопровода. Сначала следует собрать в соответствии с планом черновой вариант водопровода, то есть без нарезания резьбы. Когда система будет собрана, можно задуматься о сгонах. Если диаметр труб составляет 15 и 20 мм, стандартная длина сгона-110 мм. Если же соединяются между собой трубы диаметром 25 или 32 мм, сгон для них составит 130 мм. Трубы необходимо соединять в определенной последовательности. Сначала на резьбу одной из труб по часовой стрелке нужно намотать уплотнитель -ленту ФУМ или льняную прядь с пропилкой. Делать это следует на всю длину резьбы. такое соединение может подойти для связывания водопровода, а также для установки временных заглушек, так как короткие резьбы труб, которые соединяются с помощью муфты, не предполагают дальнейшей сборки. Когда на короткую резьбу будет тщательно намотан уплотнитель, можно начинать сгонять муфту с длинной резьбы, нужно делать это осторожно и аккуратно. Когда муфту заклинит на сбеге, ее следует поджать с помощью контргайки. Между муфтой и контргайкой предварительно необходимо намотать уплотнитель в сторону вращения контргайки в процессе ее затягивания. Первые витки резьбы специально оставляют без уплотнителя, так как в этом случае легче надеть конец резьбы трубы на внутреннюю резьбу муфты. Когда контргайка будет навинчиваться на уплотнитель, она загонит его часть в фаску муфты. В результате этого соединение будет герметичным. Трубопровод можно навесить на крепления , проложить под полом и т.д. 

 

Сварка трубы. Выбор способа сварки и оборудования, обоснование их выбора.

 

Почти 60% объема сварочных работ при строительстве трубопроводов приходится на ручную дуговую сварку. Это соединение секций или отдельных труб в непрерывную нитку, сварка переходов через естественные и искусственные преграды, сварка захлестов, вварка катушек, крановых узлов, отводов и др.

Технология ручной дуговой сварки определяется прежде всего материалом труб, подлежащих сварке. В зависимости от марки стали трубы и условий эксплуатации выбирают сварочные материалы. После этого устанавливают технологию и технику сварки, а также схему организации работ, при этом руководствуются заданным темпом строительства трубопровода. При заданных сварочных материалах технология сварки зависит от диаметра и толщины стенки трубы.

Беспрекословным правилом при строительстве магистральных и распределительных трубопроводов есть требование к минимальному количеству слоев в шве. Для труб с толщиной стенки 6 мм и менее - 2 слоя, с толщиной стенки более 6 мм - 3 слоя.

Наиболее ответственным является корневой слой шва. Он должен надежно проплавлять кромки свариваемых труб и образовывать на внутренней поверхности шва равномерный обратный валик с усилением 1-3 мм. Допускается на отдельных участках стыка длиной не более 50 мм (на каждые 350 мм шва) ослабление корня шва (мениск) величиной до 10-15% от толщины стенки трубы. Наружная поверхность корневого слоя должна быть гладкой, мелкочешуйчатой и иметь плавное сопряжение с боковыми поверхностями разделки. Оптимальной формой наружной поверхности шва можно выполнять как шлифовальной машинкой, так и пневмомолотком в соответствии с требованиями инструкции.

При сварке труб диаметром 10-20 мм и более после сварки корня шва рекомендуется выполнить подварку корневого слоя изнутри трубы в тех местах, где имеется не провар корня, и обязательно в нижней четверти периметра стыка (изнутри), т.е. на том участке, который при сварке корня шва снаружи выполнялся в потолочном положении. При ручной сварке корня шва поворотных стыков труб большого диаметра подварку выполняют по всему периметру стыка. Подеарочный шов обеспечивает провар корня, он должен иметь мелкочешуйчатую поверхность, плавно сопрягающуюся с внутренней поверхностью трубы без подрезов и других дефектов. Усиление подварочного шва должно составлять не менее 1 и не более 3 мм. Подварку выполняют электродами основного типа диаметром 3-4 мм.

Заполняющие слои шва надежно сплавляются между собой и проплавляют кромки свариваемых труб. После каждого слоя шва необходимо обязательно очищать поверхности шва от шлака.

Облицовочный шов имеет плавное очертание и сопряжение с поверхностью трубы, без подрезов и других видимых дефектов. Усиление шва должно быть не менее 1 и не более 3 мм. Ширина шва перекрывает ширину разделки на 2-3 мм в каждую сторону.

В конце смены сварной стык должен быть заварен полностью. Это требование вызвано тем, что трубопровод в течение суток претерпевает действие изменения температуры окружающего воздуха, которое особенно существенно при смене для ночью и ночи - днем. Изменение температуры вызывает возникновение в трубах и сварных стыках напряжений, которые могут быть весьма высокими.

Если стык заварен не полностью, то в ослабленном сечении шва напряжения могут превысить предел текучести и даже временное сопротивление разрушению металла шва и стык разрушится. Особенно опасна эта ситуация при отрицательных температурах воздуха, когда снижается пластичность металла.

В зависимости от типа рекомендуемых электродов существует 3 наиболее распространенных схемы сварки: сварка стыка электродами с основным покрытием, сварка стыка электродами газозащитного типа, сварка корня шва и горячего прохода электродами газозащитного типа, а заполняющих и облицовочного слоев - электродами с основным покрытием.

Сварку электродами с основным покрытием выполняют снизу вверх с поперечными колебаниями, амплитуда которых зависит от ширины разделки стыка. При поточно-расчлененном методе сварки каждый сварщик выполняет определенный участок шва, положение которого зависит от числа сварщиков, работающих одновременно на одном стыке. На трубах большого диаметра их число может достигать четырех. Как правило, если сварщиков двое, то они выполняют сварку снизу, от надира, и идут вверх по периметру в направлении (по циферблату часов) 6-3-12 и 6-9-12. При этом в потолочной части стыка замок следует смещать на 50-60 мм от нижней точки окружности трубы. В двух смежных слоях замки должны отстоять друг от друга не менее чем на 50-100 мм. Если сварщиков четверо, то первая пара варит участок стыка (по циферблату) 6-3 и 6-9, а вторая пара - 3-12 и 9-12.

Схема последовательности наложения двух слоев при сварке снизу вверх электродами с основным покрытием приведена на рис. 3, а. Все последующие нечетные слои выполняют по схеме первого слоя, все четные — по схеме второго слоя. При использовании электродов газозащитного типа сварку корня шва выполняют сверху вниз без колебательных движений, опираясь концом электрода на кромки свариваемых труб. Сварку выполняют постоянным током обратной или прямой полярности при напряжении холостого хода источника питания не менее 75В. В процессе сварки стальных трубопроводов могут выполняться поворотные и неповоротные сварные стыки. При неповоротном стыке сварщик какую то часть стыка вынужден сварить потолочным швом. Учитывая это, наружные водопроводные сети из стальных труб стараются сваривать на бровке траншеи в длинные плети, затем с помощью кранов-трубоукладчиков опускают в подготовленные траншеи. Сваренные плети укладывают в траншеи-опусканием трубопровода с одновременной его изоляцией механизированным методом.

 

Материал для сварки, обоснование их выбора.

 

Для дуговой сварки труб из углеродистых и низколегированных сталей применяют следующие сварочные материалы: для ручной сварки — покрытые металлические электроды (ГОСТ 9466—75 и ГОСТ 9467—75); для механизированной сварки — флюсы (ГОСТ 9087—81), углекислый газ С02 (ГОСТ 8050—85), проволоку стальную сварочную (ГОСТ 2246—70).

ГОСТы регламентируют качественные показатели материалов, область их применения, технологические свойства, правила испытаний, упаковку, маркировку, транспортирование, хранение и объем сопроводительной документации.

Основным показателем электродов является тип (Э42, Э50, Э50А и др.), который определяет прочностные характеристики металла шва. Типу электродов соответствует одна или несколько марок, характеризующих химический состав покрытия, марку стали стержня, технологические свойства

Флюсы для дуговой сварки бывают плавленые и керамические (с буквой «К» в названии марки). Буква «А» в конце названия типа электродов, флюсов показывает на их улучшенные показатели по вредным примесям.

В зависимости от вида дуговой сварки и марки стали труб рекомендуются соответствующие сочетания флюсов и сварочных проволок для комбинированных методов сварки.

Шлакообразующие материалы, основной задачей которых является создание шлакового покрова, защищающего расплавленный металл от атмосферного воздуха. Шлаки, образующиеся в результате расплавления этих материалов, являются той средой, в которой протекают металлургические процессы, и наряду с этим сами активно участвуют в них. Наиболее часто применяемыми шлакообразующими материалами служат: марганцевая руда, гематит, гранит, мрамор, кварц, рутил и др.

Для придания шлаку жидкотекучести, подвижности в его состэве должны находиться флюсующие вещества (плавни), обеспечивающие оптимальное значение вязкости шлака в определенном интервале температур. Короткие шлаки с требуемой температурой размягчения и интервалом плавления образуются при введении в состав электродного покрытия плавикового шпата, титаносодержащих руд, полевого шпата и др.

Газообразующие материалы, служащие для создания газовой защиты зоны сварки от атмосферного воздуха. Таковыми являются как различные органические вещества (крахмал, декстрин, целлюлоза и др.), так и минералы, которые при нагрезании диссоциируют с образованием газов (мрамор, магнезит и др.).

Раскисляющие материалы, в качестве которых при электрической дуговой сварке чаще всего используются ферросплавы элементов, обладающих достаточно высоким сродством к кислороду и другими качествами. Такими материалами являются: ферросилиций, ферротитан, ферромарганец, реже — ферроалюминий. Для диффузионного раскисления состав покрытия подбирается таким образом, чтобы поступающая в шлак закись железа связывалась в нем в силикаты или титаниты и тем самым способствовала непрерывному переходу FeO из металла ванны в шлак.

Легирующие материалы, задачей которых является легирование металла шва определенными элементами для придания требуемой технологической и эксплуатационной прочности. В качестве легирующих, как правило, используются соответствующие ферросплавы, иногда чистые металлы.

Стабилизирующие материалы, т. е. такие, которые содержат элементы с низким потенциалом ионизации (кальций, калий, натрий и др.) и снижают эффективный потенциал ионизации. Стабилизирующими материалами являются мел, мрамор, поташ, полевой шпат и др.

Цементирующие материалы, т. е. такие, на которых делается замес шихты с тем, чтобы после высыхания эти вещества скрепляли покрытие и придавали ему нужную прочность. В качестве цементирующего материала чаще всего используется жидкое стекло.

Формовочные добавки — вещества, придающие обмазочной массе лучшие кроющие свойства. В качестве формовочных добавок обычно применяется бентонит, иногда каолин, декстрин и др. Группа электродов для сварки углеродистых сталей весьма многочисленна. Многообразие марок электродов этой группы объясняется следующим образом:стремлением разработчиков улучшить сварочно- технологические свойства электродов, которые невозможно оценивать количественно путем измерений. Важнейшие характеристики группы электродов для сварки углеродистых сталей: прочностные и пластические свойства металла шва, а иногда также результаты дополнительных испытаний; вид электродного покртия, обусловливающего гигиеничесие характеристики, количество водорода и неметаллических включений в металле, стабильность горения дуги, склонность к образованию пор, производительность процесса сварки. Одна из главных характеристик электрода для сварки углеродистых сталей: временное сопротивление. Этот показатель позволяет судить о соответствии прочности металла сварного шва и свариваемой стали. Следует помнить, что использование электродов с большим временным сопротивлением, чем у свариваемой стали, может привести к концентрации сварочных напряжений в сварных швах, что отрицательно отразится на работоспособности сварной конструкции. ГОСТ 9467-75 стандартизировано 9 типов электродов для сварки углеродистых сталей: Э38, Э42, Э46, и Э50-для сталей с временным сопротивлением, Э42А, Э4А6 и Э50А- для тех же сталей, когда к металлу сварных швов бывают повышенные требования; Э55, и Э60-для сталей с временным сопротивлением от 490 до 590 МПа.

 

 

Режим сварки, обоснование выбора показателей режима сварки.

 

Режимы дуговой сварки представляют собой совокупность контролируемых параметров, определяющих условия сварочного процесса. Правильно выбранные и поддерживаемые на протяжении всего процесса сварки параметры являются залогом качественного сварного соединения. Условно параметры можно разделить на основные и дополниРежимы дуговой сварки представляют собой совокупность контролируемых параметров, тельные.Основные параметры режима дуговой сварки: диаметр электрода, величина, род и полярность тока, напряжение на дуге, скорость сварки, число проходов.Дополнительные параметры: величина вылета электрода, состав и толщина покрытия электрода, положение электрода, положение изделия при сварке, форма подготовленных кромок и качество их зачистки. Выбор диаметра электрода

Диаметр электрода выбирают в зависимости от толщины свариваемого металла, положения, в котором выполняется сварка, катета шва, а также вида соединения и формы кромок, подготовленных под сварку. Для того чтобы правильно выбрать диаметр электрода, можно воспользоваться таблицей 1.

 

Толщина свариваемых деталей, мм   1-2 3-5 4-1С  12-24 30-60

Диаметр этектрода, мм 2-3 3-4 4-5 5-6 6-8

Однако такое соотношение является примерным, так как на этот фактор накладывает отпечаток размещение шва в пространстве и количество сварочных проходов. К примеру, при потолочном положении шва не рекомендуют применять электроды с диаметром более 4 м. Не пользуются электродами больших диаметров и при многопроходной сварке, так как это может привести к непровару корня шва.Сила тока выбирается в зависимости от диаметра шва длины его рабочей части, состава покрытия, положения сварки и т.д. Чем больше сила тока, тем интенсивнее расплавляется его рабочая часть и тем выше производительность сварки. Но это правило может приниматься с некоторыми оговорками. При чрезмерном токе для выбранного диаметра электрода происходит перегрев рабочей части, что чревато ухудшением качества шва, разбрызгиванием капель жидкого металла и даже может привести к сквозным прогораниям деталей. При недостаточной силе тока дуга будет неустойчива, часто будет обрываться, что может привести к непроварам, не говоря уже о качестве шва. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения сварочного шва.Опытные сварщики силу тока определяют экспериментальным путем, ориентируясь на устойчивость горения дуги. Для тех, кто еще не имеет достаточного опыта, разработаны следующие расчетные формулы: Для наиболее распространенных диметров электрода (3 -6 мм). Для сварки потолочных швов сила тока должна быть на 10 - 20% меньше, чем при нижнем положении шва.Кроме того, на силу тока оказывает полярность и вид тока. К примеру, при сварке постоянным током с обратной полярностью катод и анод меняются местами и глубина провара увеличивается до 40%. Глубина провара при сварке переменным током на 15 - 20% меньше, чем при сварке постоянным током. Эти обстоятельства следует учитывать при выборе режимов сварки.

Выбор режима дуговой сварки

При выборе режимов сварки следует учитывать и наличие скоса свариваемых кромок. Все эти обстоятельства учтены и сведены в таблицах 2 и 3. Особенности горения сварочной дуги на постоянном и переменном токе различны. Дуга, представляющая собой газовый проводник, может отклоняться под воздействием магнитных полей, создаваемых в зоне сварки. Процесс отклонения сварочной дуги под действием магнитных полей называют магнитным дутьем, которое затрудняет сварку и стабилизацию горения дуги.

 

Характер шва Диаметр электрода, мм Ток, А  Толшина металла, мм Зазор, мм

Односторонний 3 180  3 1,0

Двухсторонний 4 220  5  1,5

Двухсторонний 5 260 7-8  1,5-2,0

Двухсторонний 6 330 10   4

Ручная дуговая сварка- называют сварку покрытым металлическим электродом.Процесс осуществления ручной дуговой сварки во многом зависит от пространственного положения сварного шва. При выполнении ручной сварки в нижнем положении главная проблема заключается в том, что без образования прожогов обеспечить полное проплавление сечения. Стекание расплавленного металла при ручной сварке в вертикальном положении оказывает большое влияние на глубину проплавления формирование шва. Непростой в исполнении является сварка и в потолочном положении. В этом случае расплавленный металл в сварочной ванне удерживается от вытекания при помощи силы поверхностного натяжения. Преимущества ручной дуговой сварки: возможность проведения сварки в местах с ограниченным доступом; возможность осуществления сварки в любых пространственных положениях; относительно быстрый переход от одного свариваемого материала к другому. Недостатки ручной дуговой сварки: на качество соединений сильно влияет квалификация сварщика; вредные условия процесса сварки.

 

 

Контроль качества сварных швов

 

Контроль качества сварных швов и соединений проводится согласно ГОСТ 3242—69 с целью выявления наружных, внутренних и сквозных дефектов Контроль качества сварных соединений и конструкций складывается из методов контроля, предупреждающих образование дефектов, и методов контроля, выявляющих сами дефекты. К методам контроля, предупреждающим образование дефектов, относятся контроль основного и присадочного металлов и других сварочных материалов, контроль подготовки деталей под сварку, а также применяемого оборудования и квалификации сварщиков

Внешним осмотром проверяется заготовка под сварку (наличие закатов, вмятин, ржавчины), правильность сборки, правильное расположение прихваток, разделка под сварку, величины притупления Внешним осмотром готового сварного изделия можно выявить наружные дефекты — непровары, наплывы, прожоги, незаваренные кратеры, подрезы, наружные трещины, поверхностные поры, смещение свариваемых элементов Перед осмотром сварной шов и прилегающая к нему поверхность основного металла по обе стороны 15—20 мм от шва очищают от металлических брызг, окалины, шлака и других загрязнений.Для своевременного выявления дефектов необходим тщательный и систематический контроль сварных соединений трубопроводов на всех стадиях производства сварки. наружному осмотру подвергают каждый сваренный стык трубопровода. Путем осмотра выявляют внешние дефекты шва: наплывы, подрезы, кратеры, прожоги, трещины, свищи, наружные поры. Металлграфическое исследование осуществляю, чтобы определить структуру металла шва и околошовной зоны, выявить в сварном шве газовые или шлаковые включения, волосяные трещины, непровары. При металлографическом исследовании проверяют излом сарного шва и определяют ег макро- и микроструктуру. Эти исследования обязательны только для паропроводов первой и 2 категорий, подведомственных Госгортехназору, и трубопроводов специального назначения. Исследованию подвергаются образцы, вырезанные из контрольного стыка.

Просвечивание рентгено- и гамма-лучами -- наиболее распространенный способ контроля сварных швов без разрушения. Просвечивание позволяет обнаружить внутренние дефекты сварки - трещины, непровар, шлаковые включения и поры. Для просвечивания сварных швов применяют стационарные (РУП-200, РУП-400-5) и переносные (РУП-120-5-1 и ИРА-1д) рентгеновские установки. Стационарные установки из-за больших габаритных размеров используют на заводах и в лабораториях; переносные - в монтажных условиях.

Магнитографический способ контроля сварных швов основан на принципе изменения магнитного рассеивания, возникающего во время намагничивания контролируемого изделия в местах расположения дефектов. Особенностью этого способа является "запись" обнаруживаемых дефектов на специальную магнитофонную пленку (ленту). Данный способ контроля применяют для труб толщиной до 20 мм, он позволяет четко выявить такие дефекты сварных швов, как продолные трещины, непровар, шлаковые включения и поры.

Ультразвуковой способ контроля сварных швов основан на различном отражении направленного пучка высокочастотных звуковых колебаний от металла (сварного шва) и имеющихся в нем дефектов. Такой контроль применяют для труб с внутренним диаметром 80 мм и более и стенками толщиной свыше 10 мм. Наибольшее применение для контроля нашли ультразвуковые дефектоскопы УЗД-7Н, НИИМ-5 и УЗД-39. Недостатком данного способа контроля является то, что он позволяет определить лишь место дефекта, а не его характер. При физических методах контроля сварные швы полагается браковать, если в них обнаружены следующие дефекты: трещины любых размеров; непровар глубиной более 15% от толщины стенки трубы, если она не превышает 20 мм, а при толщине стенки свыше 20 мм - более 3 мм; шлаковые включения и поры глубиной более 10% от толщины стенки трубы, если она не превышает 20 м и 3 мм - при толщине стенки свыше 20 мм; скопления включений и пор в виде сплошной сетки дефектов в шве независимо от их глубины.

 

 

Техника безопасности при электросварке

 

Работа электросварщика сопряжена с рядом возможных вредных и опасных воздействий на его организм. Для ослабления и устранения вредностей и опасностей, связанных с выполнением процесса дуговой электросварки, необходимо строгое выполнение установленных правил охраны труда и техники безопасности.

Наибольшее влияние на сварщика и всех лиц, находящихся в зоне выполнения электросварочных работ, оказывает излучение сварочной дуги.

Сварочная дуга является источником излучений с различной длиной волны: видимых световых, ультрафиолетовых и инфракрасных. Сварочная дуга имеет яркость видимого излучения, непереносимую для человеческого глаза, к которой он не может приспособиться. Частые перерывы в горении дуги создают резкие контрасты освещённости.

Для ослабления светового потока и смягчения контрастов освещённости применяется густо окрашенное защитное стекло, через которое сварщик наблюдает за процессом сварки. Мощное ультрафиолетовое излучение дуги вызывает болезненно протекающее воспаление глаз (электроофтальмия) и при продолжительном действии вызывает ожоги кожи. Защитное стекло должно полностью задерживать ультрафиолетовые лучи; все части тела, не закрытые одеждой, должны защищаться от излучений дуги. Лицо и шея должны быть защищены щитком или шлемом-маской, кисти рук — рукавицами. Защитное стекло должно в достаточной степени поглощать и инфракрасные лучи, могущие вызывать при длительном воздействии снижение остроты зрения.

Современные специальные защитные стёкла, производимые в РФ, полностью гарантируют сохранность зрения сварщика и обеспечивают достаточную видимость места сварки. Запрещается пользоваться случайными цветными стёклами. Окрашенное защитное стекло снаружи прикрывается обычным бесцветным стеклом, предохраняющим от брызг металла и периодически сменяемым по мере загрязнения и уменьшения прозрачности. Опасность излучений сварочных дуг для окружающих уменьшается ограждением поста сварки кабинами, переносными щитами, занавесами и т. п.

Сварочная дуга непрерывно выделяет в окружающую атмосферу газы и дым из мельчайших твёрдых частиц, преимущественно окислов металла. Количество газов и дымовых частиц и степень их вредности для работающих зависят от рода свариваемого металла, состава электродной обмазки, в соответствии с чем и применяются вентиляционные и другие устройства для защиты работающих.

Электросварщик подвергается опасности поражения электрическим током, поскольку он почти неизбежно касается токоведущих частей сварочной цепи. Особенно опасна в этом отношении сварка внутри котлов и резервуаров и других объектов, в которых сварщик сидит или лежит на металле, и сварка в сырых помещениях, на открытом воздухе в сырую погоду и т. п. Для уменьшения опасности поражения током необходимо строго соблюдать правила безопасности, надёжно заземлять корпуса сварочных машин и аппаратов, наблюдать за исправностью электросварочной аппаратуры и изоляции всех частей сварочной установки. В более опасных случаях необходимо применять для сварщика деревянные подмостки, резиновые коврики и т. п., усиливающие изоляцию тела сварщика от земли.

 

Список используемой литературы.

 

1. Справочник сварщика. В.В.Степанов. 1986г.

 

2. Теория сварочных процессов. В.К.Максимов. 1991г.

 

3. Сварка и резка металлов. Н.А.Герасимов. 1983г.

 

4. Ручная дуговая сварка. Ю.А.Малышев. 1990.

 

5. Электросварка. Н.Л.Киреев. 1987.

 

6. Материалы для сварки. В.В. Шамрин. 1993.


Дата добавления: 2018-10-25; просмотров: 324; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!