Поиск оптимального f пo нормальному распределению



 

Сейчас мы разработаем метод поиска оптимального f по нормально распреде­ленным данным. Как и формула Келли, это способ относится к параметричес­ким методам. Однако он намного мощнее, так как формула Келли отражает только два возможных результата события, а этот метод позволяет получить полный спектр результатов (при условии, что результаты нормально распреде­лены). Удобство нормально распределенных результатов (кроме того факта, что в реальности они часто являются пределом многих других распределений) со­стоит в том, что их можно описать двумя параметрами. Формулы Келли дадут вам оптимальное f для бернуллиевых результатов, если известны два параметра: отношение выигрыша к проигрышу и вероятность выигрыша. Метод расчета оптимального f, о котором мы сейчас расскажем, также требует только два па­раметра – среднее значение и стандартное отклонение результатов. Вспомним, что нормальное распределение является непрерывным распреде­лением. Для того, чтобы использовать этот метод, необходимо дискретное рас­пределение. Далее вспомним, что нормальное распределение является неограни­ченным распределением. Первые два шага, которые мы должны сделать для нахождения оптимально­го f по нормально распределенным данным, – это определить, (1) на сколько сигма от среднего значения мы усекаем распределение и (2) на сколько равноот­стоящих точек данных мы разделим интервал между двумя крайними точками, найденными в (1). Например, мы знаем, что 99,73% всех точек данных находятся между плюс и минус 3 сигма от среднего, поэтому можно использовать 3 сигма в качестве пара­метра для (1). Другими словами, мы рассматриваем нормальное распределение только между минус 3 сигма и плюс 3 сигма от среднего значения. Таким образом, мы охватываем 99,73% всей активности в пределах нормального распределения. Вообще, для этого параметра лучше использовать значение от 3 до 5 сигма. Что касается числа равноотстоящих точек данных (шаг 2), мы будем использо­вать число, как минимум, в десять раз большее количества стандартных отклоне­ний, которое используется в (1). Если мы выберем 3 сигма для (1), тогда возьмем, по крайней мере, 30 равноотстоящих точек данных для (2). Это означает, что на горизонтальной оси следует отметить отрезок от минус 3 сигма до плюс 3 сигма и нанести на нем 30 равноотстоящих точек. Так как между минус 3 сигма и плюс 3 сигма находится 6 сигма и нам надо разместить на этом отрезке 30 равноотстоя­щих точек, мы должны разделить 6 на 30 ‑ 1, или 29. Это даст нам 0,2068965517. Первой точкой данных будет минус 3. Затем мы будем добавлять 0,2068965517 к каждой предыдущей точке, пока не достигнем плюс 3. И так нанесем 30 равноот­стоящих точек данных между минус 3 и плюс 3. Нашей второй точкой данных бу­дет ‑3 + 0,2068965517 =‑2,793103448, третьей точкой данных будет 2,79310344 + 0,2068965517 = ‑2,586206896, и так далее. Таким образом, мы зададим 30 точек на горизонтальной оси. Чем больше точек данных вы используете, тем лучше будет разрешение нормальной кривой. Использование количества точек в десять раз больше числа стандартных отклонений не является строгим правилом определения минимального числа точек данных. Нормальное распределение является не­прерывным распределением. Однако мы должны сделать его дискретным, что­бы по нему найти оптимальное f. Чем большее число равноотстоящих точек данных мы используем, тем ближе наша дискретная модель будет к реальному непрерывному распределению. Почему не следует использовать слишком большое число точек данных? Чем больше точек данных вы будете использо­вать в нормальной кривой, тем больше времени понадобится для поиска опти­мального f. Даже если вы будете использовать компьютер для поиска опти­мального f, при большом количестве точек данных расчет займет достаточно много времени. Более того, каждая дополнительная точка данных увеличивает разрешение в меньшей степени, чем предыдущая точка. Мы будем называть описанные выше два вводных параметра ограничивающими параметрами (bounding parameters). Третий и четвертый шаги позволят определить среднюю арифметическую сделку и стандартное отклонение для рыночной системы, с которой вы работае­те. Если у вас нет механической системы, можно получить эти числа из брокер­ских отчетов. Один из реальных плюсов рассматриваемого метода состоит в том, что для его использования не обязательно работать по механической системе, вам даже не нужны брокерские отчеты или торговые результаты в бумажной форме. Метод можно использовать, рассчитав два вводных параметра: среднюю арифметическую сделку (в пунктах или долларах) и стандартное отклонение сделок (в пунктах или долларах, в зависимости от того, что вы используете для средней арифметической сделки). Если стандартное отклонение сложно рассчитать, тогда просто попытайтесь понять, насколько, в среднем, сделка будет отличаться от средней сделки. Рассчи­тав среднее абсолютное отклонение, вы можете использовать уравнение (3.18) для преобразования оценочного среднего абсолютного отклонения в оценочное стандартное отклонение:

(3.18) S=M* 1/0,7978845609

=М* 1,253314137,

где S = стандартное отклонение;

М = среднее абсолютное отклонение.

Эти два параметра, среднее арифметическое средней сделки и стандартное откло­нение сделок, мы будем называть действительными вводными параметрами. Теперь нам надо взять все равноотстоящие точки данных из шага (2) и найти их соответствующие ценовые значения, основываясь на среднем арифметическом значении и стандартном отклонении. Вспомним, что наши равноотстоящие точ­ки данных выражены в стандартных единицах. Теперь для каждой из этих равно­отстоящих точек данных мы найдем соответствующую цену:

(3.27) D = U + (S * Е),

где D = ценовое значение, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U= среднее арифметическое.

После того как мы определили все ценовые значения, соответствующие каждой точке данных, мы можем сказать, что сконструировали распределение, к которо­му, как ожидается, будут стремиться точки данных.

Однако данный метод позволяет сделать намного больше. Мы можем вклю­чить два дополнительных параметра, которые позволят нам рассмотреть типы сценариев «что если». Эти параметры, которые мы назовем параметрами «что если», позволяют увидеть влияние изменения нашей средней сделки, или измене­ния дисперсии (стандартного отклонения) сделок.

Первый из этих параметров, называемый сжатием (shrink), затрагивает среднюю сделку. Сжатие – это просто множитель нашей средней сделки. Вспомните, что когда мы находим оптимальное f, то попутно получаем другие величины, которые являются полезными побочными продуктами оптималь­ного f. Такие расчеты включают среднее геометрическое, TWR и среднюю гео­метрическую сделку. Сжатие является величиной, на которую мы умножаем среднюю сделку еще до того, как осуществляем поиск оптимального f. Следо­вательно, сжатие позволяет нам рассчитать оптимальное f для того случая, когда средняя сделка затронута сжатием, а также рассчитать новые побочные продукты. Предположим, вы торгуете в системе, которая в последнее время работала очень эффективно. Вы знаете, что рано или поздно система прекратит работать так же ус­пешно, поэтому хотите знать, что произойдет, если средняя сделка будет уменьшена наполовину. Используя значение сжатия 0,5 (так как сжатие является множителем, то средняя сделка, умноженная на 0,5, будет равна половине средней сделки), вы може­те найти оптимальное f, когда средняя сделка уменьшается наполовину. Вы сможете увидеть, как такие изменения затрагивают геометрическую среднюю сделку и другие величины. Используя значение сжатия 2, вы также сможете увидеть последствия уд­воения средней сделки. Другими словами, параметр сжатия может также использо­ваться для увеличения вашей средней сделки. Более того, он позволяет вам взять неприбыльную систему (то есть систему со средней сделкой меньше нуля) и, используя отрицательное значение сжатия, посмотреть, что произойдет, если эта система станет прибыльной. Допустим, у вас есть система, которая показывает среднюю сделку ‑100 долларов. Если вы будете использовать значение сжатия ‑0,5, то получите оптималь­ное f для этого распределения со средней сделкой 50 долларов, так как ‑100 * * ‑0,5 = 50. Если бы мы использовали фактор сжатия ‑2, то получили бы рас­пределение со средней сделкой 200 долларов. Следует крайне аккуратно исполь­зовать параметры «что если», так как они легко могут привести к неправильным результатам. Уже было упомянуто, что вы можете превратить систему с отрица­тельной арифметической средней сделкой в прибыльную систему. Это может привести к проблемам, если, например, в будущем, у вас по‑прежнему будет от­рицательное ожидание. Другой параметр «что если» называется растяжением (stretch), но он не проти­воположен сжатию, как можно было бы подумать. Растяжение является множите­лем стандартного отклонения. Вы можете использовать этот параметр для опре­деления влияния разброса на f и его побочные продукты. Растяжение всегда дол­жно быть положительным числом, в то время как сжатие может быть положитель­ным или отрицательным (пока средняя сделка, умноженная на сжатие, имеет по­ложительное значение). Если вы хотите увидеть, что произойдет, когда ваше стандартное отклонение удвоится, просто используйте значение 2 для растяже­ния. Чтобы увидеть, что произойдет, если разброс уменьшится, используйте зна­чение меньше 1.При использовании этого метода вы заметите, что, когда растя­жение стремится к нулю, значения побочных продуктов увеличиваются, и, в ре­зультате, вы получаете более оптимистичную оценку будущего, и наоборот. Сжа­тие работает противоположным образом, так как при сжатии, стремящемся к нулю, мы получаем более пессимистичные оценки будущего, и наоборот. После того как мы зададим значения, которые будем использовать для растяжения и сжатия (сейчас и для одного, и для другого мы будем использовать единицу, то есть оставим действительные параметры без изменения), можно изменить урав­нение (3.27):

(3.28) D = (U * Сжатие) + (S * E * Растяжение),

где D = значение цены, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U = среднее арифметическое.

Подведем итоги. Первые два шага определяют ограничительные параметры (число сигма с каждой стороны от среднего, а также количество равноотстоя­щих точек данных, которое мы собираемся использовать в этом интервале).

Следующие два шага – это нахождение действительных вводных параметров (средней арифметической сделки и стандартного отклонения). Мы можем по­лучить эти параметры эмпирически из результатов торговой системы или из брокерских отчетов. Можно также получить эти величины оценочным путем, но помните, что результаты в этом случае будут настолько точны, насколько точны ваши оценки. Пятый и шестой шаги позволяют определить факторы, ко­торые надо использовать для растяжения и сжатия, если вы собираетесь исполь­зовать сценарий «что если», в противном случае просто используйте единицу как для растяжения, так и для сжатия. Седьмым шагом будет использование уравнения (3.28) для преобразования равноотстоящих точек данных из стандар­тных значений либо в пункты, либо в доллары (в зависимости от того, что вы ис­пользовали в качестве вводных данных для средней арифметической сделки и стандартного отклонения).

Восьмой шаг позволит найти вероятность, ассоциированную (associated) (на­ходящуюся во взаимно однозначном соответствии) с каждой из равноотстоящих точек данных. Эта вероятность определяется уравнением 3.21):

 

 

Мы будем использовать уравнение (3.21) без оговорки «если Z < 0, тогда N(Z) = 1 ‑ N(Z)», так как нам надо знать, какова вероятность события, рав­ного или превышающего заданное количество стандартных единиц.

Каждая точка данных имеет стандартное значение, определяемое как па­раметр Z в уравнении (3.21), а также значение, выраженное в долларах или пунктах. Существует еще одна переменная, соответствующая каждой равно­отстоящей точке данных, – ассоциированная вероятность.

Алгоритм расчета

Алгоритм будет продемонстрирован на торговом примере, уже рассмотрен­ном в этой главе. Так как наши 232 сделки выражены в пунктах, нам следует преобразовать их в соответствующие долларовые значения. Какой именно

рынок рассматривается, нам неизвестно, поэтому зададим произвольное значение в 1000 долларов за пункт. Таким образом, средняя сделка 0,330129 преобразуется в 0,330129 * 1000 долларов, или в 330,13 доллара. Стандартное отклонение 1,743232, умноженное на 1000 долларов за пункт, станет равно 1743,23 доллара. Теперь построим матрицу. Сначала мы должны определить диапазон (коли­чество сигма от среднего), в который попадают данные. В нашем примере мы выберем 3 сигма, что означает диапазон от минус 3 сигма до плюс 3 сигма. От­метьте, что следует использовать одинаковое количество сигма слева и справа от среднего. Далее следует определиться с тем, на сколько равноотстоящих точек дан­ных разделить полученный интервал. Выбрав 61, мы получим точку данных на каждой десятой части стандартной единицы. Таким образом, мы зададим стол­бец стандартных значений.

Теперь мы должны определить среднее арифметическое, которое будем ис­пользовать в качестве вводного данного. Мы определим его эмпирически из 232 сделок, в нашем случае оно равно 330,13 доллара. Далее мы найдем стандарт­ное отклонение, которое также определим эмпирически из 232 сделок, оно будет равно 1743,23 доллара. Теперь рассчитаем столбец ассоциированных P&L, то есть определим P&L для каждого стандартного значения. Но до того как определять столбец ассоцииро­ванных P&L, мы должны задать значения для растяжения и сжатия. Так как сей­час мы не собираемся рассматривать сценарии «что если», то возьмем единицу как для растяжения, так и для сжатия.

 

Среднее арифметическое = 330,13

Стандартное отклонение = 1743,23

Растяжение = 1

Сжатие = 1

С помощью уравнения (3.28) можно рассчитать столбец ассоциированных P&L. Для этого возьмите каждое стандартное значение и подставьте в уравнение (3.28):

(3.29) D = (U * Сжатие) + (S * E * Растяжение),

где D = значение цены, соответствующее значению стандартной единицы;

Е = значение стандартной единицы;

S = стандартное отклонение;

U=среднее арифметическое.

При стандартном значении ‑3 ассоциированное P&L составляет:

D = (U * Сжатие) + (S * E * Растяжение) = (330,129 * 1) + (1743,232 * (‑3) * 1) = 330,129 + (‑5229,696) = 330,129 ‑ 5229,696 = ‑4899,567

Таким образом, ассоциированное P&L при стандартном значении ‑3 равно ‑4899,567. Теперь нам надо определить ассоциированное P&L для следующего стандартного значения, которое составляет ‑2,9, для чего решим то же уравнение (3.29), только на этот раз возьмем Е = ‑2,9. Теперь определим столбец ассоции­рованной вероятности. Ее можно рассчитать, используя стандартное значение в качестве вводного данного для Z в уравнении (3.21) без оговорки «если Z < О, тогда N(Z) = 1 ‑ N(Z)». При стандартном значении ‑3 (Z = ‑3) получаем:

N(Z) = N'(Z) * ((1,330274429 * Y^ 5) ‑ (1,821255978 * Y^ 4) +

+ (1,781477937 * Y ^ 3) ‑ (0,356563782 * Y^ 2 + (0,31938153 * Y))) Если Z < 0, тогда N(Z) = 1 ‑ N(Z), где  Y =1/(1+0,2316419 *ABS(Z));

ABS() = функция абсолютного значения;

V N'(Z) = 0,398942 * EXP (‑ (Z^2/2));

ЕХР() = экспоненциальная функция. Таким образом:

N'(‑3) = 0,398942 * EXP (‑ ((‑3)^2/2)) = 0,398942 * ЕХР(‑ (9/2)) = 0,398942 * EXP (‑4,5) =0,398942*0,011109 =0,004431846678 Y = 1 / (1 + 0,2316419 * ABS(‑3)) = I/(1+0,2316419*3) =1/(1+ 0,6949257) =1/1,6949257 = 0,5899963639

N(‑3) = 0,004431846678 * ((1,330274429 * 0,5899963639 ^ 5) ‑

‑ (‑1,821255978 * 0,5899963639^ 4) + + (1,781477937 * 0,5899963639^3) ‑

‑ (0,356563782 * 0,589996363^ 2) + + (0,31938153 * 0,5899963639)) = 0,004431846678 * ((1,330274429 * 0,07149022693) ‑

‑ (1,821255978 * 0,1211706) + (1,781477937 * 0,2053752) ‑

‑ (0,356563782 * 0,3480957094) + (0,31938153 * 0,5899963639)) = 0,004431846678 * (0,09510162081‑ 0,2206826796+ 0,3658713876 ‑

‑0,1241183226 + 0,1884339414) =0,004431846678*0,3046059476 =0,001349966857

Отметьте, если Z имеет отрицательное значение (Z = ‑3), нам не надо менять N(Z) на N(Z) = 1 ‑ N(Z). Теперь для каждого значения в столбце стандартных значений будут соот­ветствующие значения в столбце ассоциированных P&L и в столбце ассоции­рованной вероятности. Это показано в следующей таблице. После того как вы заполните эти три столбца, можно начать поиск оптимального f и его побоч­ных продуктов.

 

 

 Стандартное значение Ассоциированные P&L Ассоциированная вероятность Ассоциированное значение HPR при f= 0,01
‑3,0 ($4899,57) 0,001350 0,9999864325
‑2,9 ($4725,24) 0,001866 0,9999819179
‑2,8 ($4550,92) 0,002555 0,9999761557
‑2,7 ($4376,60) 0,003467 0,9999688918
‑2,6 ($4202,27) 0,004661 0,9999598499
‑2,5 ($4027,95) 0,006210 0,9999487404
‑2,4 ($3853,63) 0,008198 0,9999352717
‑2,3 ($3679,30) 0,010724 0,9999191675
‑2,2 ($3504,98) 0,013903 0,9999001875

 

 

   

 Продолжение

Стандартное значение
Ассоциированные P&L Ассоциированная вероятность Ассоциированное значение HPR при f= 0,01
‑2,1 ($3330,66) 0,017864 0,9998781535
‑2,0 ($3156,33) 0,022750 0,9998529794
‑1,9 ($2982,01) 0,028716 0,9998247051
‑1,8 ($2807,69) 0,035930 0,9997935316
‑1,7 ($2633,37) 0,044565 0,9997598578
‑1,6 ($2459,04) 0,054799 0,9997243139
‑1,5 ($2284,72) 0,066807 0,9996877915
‑1,4 ($2110,40) 0,080757 0,9996514657
‑1,3 ($1936,07) 0,096800 0,9996168071
‑1,2 ($1761,75) 0,115070 0,9995855817
‑1,1 ($1587,43) 0,135666 0,999559835
‑1,0 ($1413,10) 0,158655 0,9995418607
‑0,9 ($1238,78) 0,184060 0,9995341524
‑0,8 ($1064,46) 0,211855 0,9995393392
‑0,7 ($890,13) 0,241963 0,999560108
‑0,6 ($715,81) 0,274253 0,9995991135
‑0,5 ($541,49) 0,308537 0,9996588827
‑0,4 ($367,16) 0,344578 0,9997417168
‑0,3 ($192,84) 0,382088 0,9998495968
‑0,2 ($18,52) 0,420740 0,9999840984
‑0,1 $155,81 0,460172 1,0001463216
0,0 $330,13 0,500000 1,0003368389
0,1 $504,45 0,460172 1,0004736542
0,2 $678,78 0,420740 1,00058265
0,3 $853,10 0,382088 1,0006649234
0,4 $1027,42 0,344578 1,0007220715
0,5 $1201,75 0,308537 1,0007561259

 

 

   

 Продолжение

Стандартное значение
Ассоциированные P&L Ассоциированная вероятность Ассоциированное значение HPR при f= 0,01
0,6 $1376,07 0,274253 1,0007694689
0,7 $1,550,39 0,241963 1,0007647383
0,8 $1724,71 0,211855 1,0007447264
0,9 $1899,04 0,184060 1,0007122776
1,0 $2073,36 0,158655 1,0006701921
1,1 $2247,68 0,135666 1,0006211392
1,2 $2422,01 0,115070 1,0005675842
1,3 $2596,33 0,096800 1,0005117319
1,4 $2770,65 0,080757 1,0004554875
1,5 $2944,98 0,066807 1,0004004351
1,6 $3119,30 0,054799 1,0003478328
1,7 $3293,62 0,044565 1,0002986228
1,8 $3,467,95 0,035930 1,0002534528
1,9 $3642,27 0,028716 1,0002127072
2,0 $3816,59 0,022750 1,0001765438
2,1 $3990,92 0,017864 1,000144934
2,2 $4165,24 0,013903 1,0001177033
2,3 $4339,56 0,010724 1,0000945697
2,4 $4513,89 0,008198 1,0000751794
2,5 $4688,21 0,006210 1,0000591373
2,6 $4862,53 0,004661 1,0000460328
2,7 $5036,86 0,003467 1,0000354603
2,8 $5211,18 0,002555 1,0000270338
2,9 $5385,50 0,001866 1,0000203976
3,0 $5559,83 0,001350 1,0000152327

 

Побочные продукты при f= 0,01:

TWR= 1,0053555695

Сумма вероятностей = 7,9791232176

Среднее геометрическое = 1,0006696309

GAT = $328,09 доллара.

Оптимальное f надо искать следующим образом. Сначала вы должны опреде­литься с методом поиска f. Можно просто перебрать числа от 0 до 1 с определен­ным шагом (например 0,01), используя итерационный метод, или применить метод параболической интерполяции, описанный в книге «Формулы управле­ния портфелем». Вам следует определить, какое значение f (между 0 и 1) позволит получить наибольшее среднее геометрическое. После того как вы определитесь с методом поиска, следует найти ассоциированное P&L наихудшего случая. В нашем при­мере это значение P&L, соответствующее ‑3 стандартным единицам, то есть ‑4899,57.

Для того чтобы найти средние геометрические для значений f, которые вы бу­дете перебирать в поиске оптимального, нужно преобразовать каждое значение ассоциированных P&L и вероятность в HPR. Уравнение (3.30) позволяет рассчи­тать HPR:

 

 

где  L = ассоциированное значение P&L;

W = ассоциированное значение P&L наихудшего случая (это всегда отрицательное значение);

f= тестируемое значение f;

Р = ассоциированная вероятность.

Для f=0,01 найдем ассоциированное HPR при стандартном значении‑3. Ассо­циированное P&L наихудшего случая составляет ‑4899,57. Поэтому HPR равно:

HPR = (1 + (‑4899,57 / (‑4899,57 / (‑0,01))))^ 0,001349966857 = (1 + (‑4899,57/489957))^ 0,001349966857 = (1 + (‑0,01))^ 0,00139966857 = 0,99^ 0,001349966857 = 0,9999864325

После того как мы найдем ассоциированные HPR для тестируемого f (0,01 в на­шем примере), можно рассчитать TWR. TWR – это произведение всех HPR для данного значения f:

 

 

где N = общее число равноотстоящих точек данных;

HPR = HPR из уравнения (3.30), соответствующее точке данных i. Поэтому для нашего тестируемого значения f= 0,01 TWR равно:

TWR = 0,9999864325 * 0,9999819179 * ... * 1,0000152327 = 1,0053555695

Мы можем легко преобразовать TWR в среднее геометрическое, возведя TWR в сте­пень, равную единице, поделенной на сумму всех ассоциированных вероятностей.

 

 

где N == число равноотстоящих точек данных;

R = ассоциированная вероятность точки данных i.

Если мы просуммируем значения столбца, который включает 61 ассоциирован­ную вероятность, получим 7,979105. Поэтому среднее геометрическое при f= 0,01 равно:

G = 1,0053555695 ^ (1/7,979105) = 1,00535555695 ^ 0,1253273393 = 1,00066963

Мы можем также рассчитать среднюю геометрическую сделку (GAT). Это сумма, которую вы бы заработали в среднем на контракт за сделку, если бы торговали при этом распределении результатов и при данном значении f.

 

 

где G(f) = среднее геометрическое для данного значения f;

W = ассоциированное P&L наихудшего случая.

GAT = (1,00066963 ‑ 1) * (‑4899,57 / (‑0,01)) = 0,00066963 * 489957 = 328,09

Таким образом, в среднем на контракт можно ожидать выигрыша в 328,09 доллара. Теперь перейдем к следующему значению f, которое должно те­стироваться в соответствии с выбранной процедурой поиска оптимального f. В нашем случае мы проверяем значения f от 0 до 1 с шагом 0,01, так что следую­щим тестируемым значением f будет 0,02. Рассчитаем новый столбец ассоции­рованных HPR, а также найдем TWR и среднее геометрическое. Значение f, ко­торое в результате даст наивысшее среднее геометрическое, является оптималь­ным (для вводных параметров, которые мы использовали). Если бы для данного примера мы продолжили поиск оптимального f, то получили бы f= 0,744 (при расчете оптимального f используется шаг 0,001). Среднее геометрическое в этом случае равно 1,0265. Соответствующая средняя геометрическая сделка составит 174,45 доллара.

Следует отметить, что само по себе значение TWR не столь важно. Когда мы рассчитываем среднее геометрическое параметрически, как в этом примере, TWR просто является промежуточным шагом для получения этого среднего гео­метрического. Теперь мы можем рассчитать, каким было бы наше TWR после Х сделок, возведя среднее геометрическое в степень X. Поэтому если мы хотим рассчитать TWR для 232 сделок при среднем геометрическом 1,0265, то следует возвести 1,0265 в степень 232, что даст 431,79. В таком случае, при торговле с оптимальным f =0,744 можно ожидать прибыль 43079% ((431,79 ‑ 1) * 100) после 232 сделок. Еще одним побочным продуктом, который мы рассчитаем, будет порог гео­метрической торговли (2.02):

Порог геометрической торговли = 330,13/174,45 * ‑4899,57 / ‑0,744 = 12462,32

Отметьте, что значение средней арифметической сделки 330,13 доллара не явля­ется результатом, полученным с помощью этого метода, а используется как один из вводных параметров.

Мы можем преобразовать оптимальное f в количество контрактов для торгов­ли с помощью уравнения:

(3.34) K=E/Q,

где К = число контрактов для торговли;

Е = текущий баланс счета.

(3.35) Q=W/(‑f),

где W = ассоциированное P&L наихудшего случая;

Отметьте, что переменная Q представляет собой число, на которое вы должны разделить баланс счета, чтобы узнать сколькими контрактами торговать, при этом баланс должен ежедневно корректироваться. Возвращаясь к нашему примеру: Q = ‑4899,57 / ‑0,744 = $6585,44

Следовательно, мы будем торговать 1 контрактом на каждые 6585,44 доллара на балансе счета. Для счета размером в 25 000 долларов это означает, что мы будем торговать:

К =25 000/6585,44 = 3,796253553

Так как мы не можем торговать дробными контрактами, то должны округлить это число 3,796253553 вниз до ближайшего целого числа. Поэтому для счета в 25 000 долларов мы будем торговать 3 контрактами. Причина, по которой мы всегда будем округлять вниз, а не вверх, состоит в том, что плата за нахождение ниже оптималь­ного f меньше, чем плата за нахождение выше.

Отметьте, насколько чувствительна торговля оптимальным числом кон­трактов к наихудшему убытку. Наихудший убыток зависит только от того, на сколько стандартных отклонений вы отходите влево от среднего. Данный ограни­чительный параметр, интервал, выраженный в количестве стандартных отклоне­ний, очень важен. В нашем расчете мы выбрали три сигма. Это означает, что мы допускаем проигрыш в три сигма. Однако проигрыш за пределами трех сигма мо­жет сильно нам повредить, если он выйдет слишком далеко за это значение. По­этому вам следует быть очень осторожными с выбором этого ограничительного параметра. От величины интервала зависит очень многое. Заметьте, что для простоты изложения мы не учитывали комиссионные и проскальзывание. Если учитывать комиссионные и проскальзывание, то следу­ет вычесть Х долларов комиссионных и проскальзывания из каждой сделки в самом начале. Затем следует рассчитать среднюю арифметическую сделку и стандартное отклонение на основе 232 измененных сделок и далее выпол­нить уже известную процедуру. Теперь рассмотрим сценарий «что если». Допустим, мы хотим посмотреть, что произойдет, если прибыль в средней сделке уменьшится вдвое (сжатие = 0,5). Да­лее предположим, что рынок становится очень волатильным и дисперсия увели­чивается на 60% (растяжение = 1,6). Подставляя эти параметры в систему, мы мо­жем посмотреть, как они влияют на оптимальное f, и скорректировать нашу тор­говлю до того, как эти изменения произойдут на самом деле. Таким образом, оптимальное f будет равно 0,262, что соответствует торговле 1 контрактом на каж­дые 31 305,92 доллара на балансе счета (так как P&L наихудшего случая сильно за‑

висит от растяжения и сжатия). Среднее геометрическое упадет до 1,0027, сред­няя геометрическая сделка уменьшится до 83,02 доллара, a TWR за 232 сделки бу­дет равно 1,869. Такие изменения вызваны уменьшением средней сделки на 50% и увеличением стандартного отклонения на 60%, что вполне может произойти на практике. Также возможно, что будущее будет более благоприятно, чем прошлое. Мы можем проанализировать другую ситуацию. Допустим, мы хотим посмот­реть, что произойдет, если наша средняя прибыль увеличится на 10%. Для этого следует ввести значение сжатия 1,1. Параметры «что если», растяжение и сжатие, крайне важны в управлении капиталом.

Чем ближе ваше распределение торговых P&L к нормальному, тем лучше бу­дет работать метод. Проблема почти всех методов управления деньгами состоит в том, что следует учитывать определенный «коэффициент ухудшения». Здесь ухудшение – это разница между нормальным распределением и распределени­ем, которое вы реально получаете. Разница между ними и есть коэффициент ухудшения, и чем больше этот коэффициент, тем менее эффективным стано­вится метод.

С помощью вышеописанного метода мы определили, что торговля 1 контрак­том на каждые 6585,44 доллара на балансе счета оптимальна. Однако если бы мы совершили эти сделки на практике и определили оптимальное f эмпирически, то оптимальным был бы 1 контракт на каждые 7918,04 доллара на балансе счета. Как можно видеть, использование нормального распределения сместило нас слегка вправо вдоль кривой f и привело к торговле несколько большим числом контрак­тов, чем предлагает эмпирический метод.

Однако, как мы увидим позже, многое говорит в пользу того, что будущее рас­пределение цен будет нормальным. Когда мы покупаем или продаем опцион, предположение, что будущее распределение изменений цены базового инстру­мента будет нормальным, уже заложено в цену опциона. Точно так же можно ска­зать, что трейдеры, не использующие механические системы, получат в будущем результаты, которые нормально распределены.

В методе, описанном в этой главе, используются неприведенные данные. При использовании приведенных данных метод будет выглядеть следующим образом:

1. До того как данные нормированы, их следует привести к текущим ценам пу­тем преобразования всех торговых прибылей и убытков в процентные при­были и убытки с помощью уравнений с (2.10а) по (2.10в). Затем эти процент­ные прибыли и убытки следует умножить на текущую цену

2. Когда вы перейдете к нормированию этих данных, нормируйте приведен­ные данные, используя среднее и стандартное отклонение приведенных данных.

3. Далее, определите оптимальное f, среднее геометрическое и TWR. Средняя геометрическая сделка, средняя арифметическая сделка и порог геометри­ческой торговли справедливы только для текущей цены базового инструмента. Когда цена базового инструмента изменяется, процедура должна быть проведена заново. Когда вы перейдете к повторному проведению про­цедуры с другой ценой базового инструмента, вы получите то же оптималь­ное f, среднее геометрическое и TWR. Однако средняя арифметическая сделка, средняя геометрическая сделка и порог геометрической торговли будут другими в зависимости от новой цены базового инструмента.

4. Количество контрактов для торговли, рассчитываемое с помощью уравне­ния (3.34), соответствующим образом изменится. P&L наихудшего случая, переменная W, используемая в уравнении (3.34), также изменится.

Из этой главы, мы узнали, как найти оптимальное f по распределению вероятности. Мы использовали нормальное распределение, так как оно описывает многие есте­ственно происходящие процессы. Кроме того, с ним легче работать, чем со многими другими распределениями, так как можно рассчитать интеграл функции нормально­го распределения с помощью уравнения (3.21)[16]. Однако нормальное распределение за­частую является неполной моделью для распределения торговых прибылей и убытков. Какая модель будет приемлемой для наших целей? В следующей главе мы ответим на этот вопрос и будем полагаться на методы из главы 3 при работе с любым видом рас­пределения вероятности независимо от того, существует интеграл функции распре­деления или нет.

 

Глава 4


Дата добавления: 2018-10-26; просмотров: 242; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!