Трихомонады, лямблии. Систематика, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики.



Лямблии

1. Строение

Лямблия (Lamblia intestinalis) впервые была описана русским ученым Д. Ф. Лямблем (1859), в честь которого она и получила свое название.

Лямблия существует в виде вегетативной формы (трофозоит) и цисты .

Вегетативная форма активная, подвижная, грушевидная, передний конец тела закруглен, задний заострен. Длина 9--18 мкм. В передней части тела находится присасывательный диск в виде углубления. Имеет 2 ядра, 4 пары жгутиков. Жгутики, проходя частично в цитоплазме, образуют два хорошо видимых при окраске продольных пучка.

При наблюдении в живом состоянии движение очень характерное, паразит все время переворачивается боком за счет вращательного движения вокруг продольной оси. В препарате при комнатной температуре лямблии быстро погибают. Пищу всасывают всей поверхностью. Размножаются продольным делением.

Цисты -- это неподвижные неактивные формы паразита. Длина 10--14 мкм. Форма овальная. Оболочка сравнительно толстая, хорошо очерчена, часто в значительной своей части как бы отслоена от тела самой цисты. Этот признак помогает отличать цисты лямблий от других сходных образований.

В растворе Люголя окрашиваются в желтовато-коричневатый цвет. Окрашивание позволяет видеть в зрелой цисте 4 ядра.

2. Цикл развития

Обитают в верхнем отделе тонкого кишечника. С помощью присасывательного диска прикрепляются к ворсинкам. В желчном пузыре лямблий не живут, так как желчь на них действует губительно. Частое обнаружение их при дуоденальном зондировании объясняется тем, что лямблий попадают в содержимое двенадцатиперстной кишки с ее стенок.

Обычно вегетативные формы с испражнениями не выделяются, однако при поносах их можно обнаружить в свежевыделенных жидких фекалиях. Лямблий, попадая в нижние отделы кишечника, где условия для них неблагоприятные, превращаются в цисты, которые и выделяются обычно с испражнениями.

Цисты хорошо сохраняются во внешней среде, в зависимости от влажности и окружающей температуры -- до месяца; при высушивании погибают очень быстро.

3. Клиника.

Лямблии распространены очень широко, особенно часто они встречаются у детей. По мнению некоторых ученых, лямблии, особенно при большом их числе, могут вызывать механическое раздражение слизистой оболочки кишечника, в определенной степени затруднять всасывание жиров и жирорастворимых витаминов. При этом могут возникать нерезкие боли в животе, расстройство стула, снижение аппетита, иногда боли в правом подреберье (лямблиоз). В некоторых случаях лямблии могут ухудшить течение других заболеваний кишечника и желчных путей. Ряд ученых считают лямблии непатогенными. Таким образом, вопрос о патогенности лямблии в настоящее время окончательно не решен.

Трихомонады

1. Виды

У человека обитают три вида трихомонад (рис. 11):Trichomonas hominis-- кишечная, обитающая в толстом кишечнике; Trichomonas tenax-- ротовая, обитающая в полости рта; Trichomonas vagimalis-- влагалищная, паразитирующая в мочеполовых путях.

2. Строение

Кишечная трихомонада имеет грушевидное тело длиной 8--20 мкм. От переднего конца тела отходят обычно 5 жгутиков. С одной стороны тела по всей его длине расположена волнообразна; перепонка (ундулирующая мембрана), по наружному краю которой про ходит тонкая нить, выступающая своим свободным концом в виде жгутика. В цитоплазме при окраске видны ядро и осевая нить. Движение трихомонады активное, беспорядочное, “суетливое”.

Наряду с поступательным движением трихомонады вращаются вокруг продольной оси. Мембрану удается заметить только при замедлении движения трихомонады или при ее остановке в виде периодически пробегающих волн по одной из сторон тела. Размножается делением. Цист не образует. Обитает в толстом кишечнике человека. В жидких испражнениях может обнаруживаться в очень больших количествах. В ряде случаев играет определенную роль в развитии или ухудшении течения заболеваний толстого кишечника, особенно у детей раннего возраста.

Ротовая трихомонада по строению похожа на кишечную, ее длина 6--13 мкм, ундулирующая мембрана не достигает конца тела. Цист не образует.

Патогенное значение не доказано, хотя и имеются данные о значительно более частой встречаемости у лиц с различными заболеваниями полости рта и зубов (гингивит, пародонтоз, кариес зубов) и о неблагоприятной роли этих простейших в поддержании патологического процесса. Некоторые исследователи обнаруживали трихомонад в мокроте больных легочными заболеваниями, а также в удаленных хирургическим путем бронхоэктазах и абсцессах легких. Все это заставляет обратить внимание на необходимость более широкого применения лабораторных методов исследования с целью выявления ротовых трихомонад в стоматологических и терапевтических медицинских учреждениях.

Трихомонад обнаруживают при микроскопии нативных или окрашенных мазков из соскоба ротовой полости (с зубов, десен, из очагов воспаления и нагноения), в бронхиальной слизи и мокроте. Выявляемость увеличивается с применением методов посева на питательные среды.

Влагалищная трихомонада имеет грушевидное тело длиной 14--30 мкм (см. рис. 12).

На переднем конце тело имеет 4 жгутика и ундулирующую мембрану, доходящую только до середины тела. Ближе к переднему концу располагается ядро. Сквозь все тело проходит осевая нить (аксостиль), выступающая на заднем конце в виде шипика. Цитоплазма содержит вакуоли. Цист не образует, во внешней среде быстро погибает. Играет заметную роль в патологии мочеполовой системы, особенно у женщин. Наблюдается и длительное бессимптомное носительство, чаще у мужчин. Основными симптомами заболевания, которое называется мочеполовым трихомонозом, являются зуд, боль, жжение, серозно-гнойные выделения (бели).

Трихомонады этого вида передаются лишь половым путем. Иногда высказываемое мнение о том, что трихомонады могут переселиться во влагалище из кишечника, неверно, так как кишечная и влагалищная трихомонады -- это разные виды с различными требованиями к условиям среды обитания.

Диагноз ставят при обнаружении трихомонад в выделениях мочеполовых путей методом микроскопии нативных или окрашенных по Романовскому мазков


Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Волгоградский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

 

Кафедра биологии

Факультет лечебный

Дисциплина «Биология»

 

Экзаменационный билет №37

 

1. Элементарные эволюционные факторы. Мутационный процесс и генетическая комбинаторика. Популяционные волны, изоляция, дрейф генов, естественный отбор. Взаимодействие элементарных эволюционных факторов.

2. Биологические ритмы. Медицинское значение хронобиологии.

3. Ланцетовидный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики, профилактика.

М.П.                                                              Зав. кафедрой ___________

Элементарные эволюционные факторы. Мутационный процесс и генетическая комбинаторика. Популяционные волны, изоляция6 дрейф генов, естественный отбор. Взаимодействия элементарных эволюционных факторов.

Элементарные эволюционные факторы – это стохастические (вероятностные) процессы, протекающие в популяциях, которые служат источниками первичной внутрипопуляционной изменчивости.

К основным ЭЭФ относятся: мутационный процесс, рекомбинации и давление мутаций. Эти факторы обеспечивают появление в популяциях новых аллелей (а также хромосом и целых хромосомных наборов). К дополнительным ЭЭФ относятся: популяционные волны, изоляция, эффект основателя, дрейф генов. Эти факторы обеспечивают эффект «бутылочного горлышка», способствующий изменению частот аллелей в популяции. К ЭЭФ относятся и другие процессы, способные изменить генетическую структуру популяции: миграции (поток генов), мейотический драйв и прочие.

 

МУТАЦИОННЫЙ ПРОЦЕСС

Мутационный процесс – это процесс возникновения в популяциях самых разнообразных мутаций: генных, хромосомных и геномных. Мутационный процесс является важнейшим элементарным эволюционным фактором, поскольку поставляет элементарный эволюционный материал – мутации. Именно мутации обеспечивают появление новых вариантов признака, именно мутации лежат в основе всех форм изменчивости.

Генетическая комбинаторика. В результате постоянных скрещиваний в по­пуляции возникает множество новых соче­таний аллелей. Эта генетическая комбина­торика многократно изменяет значение му­таций: они входят в новые геномы, оказыва­ются в разной генотипической среде (см. гл. 11). Потенциально число таких комбинаций имеющегося генетического материала в лю­бой популяции невообразимо велико, но реализуется лишь ничтожная часть из этого теоретически возможного числа вариантов

 

Дрейф генов. Случайные ненаправленные изменения частот аллелей в популяциях называются дрейфом генов в широком смысле этого слова.

Дрейфом генов в узком смысле слова Сьюэлл Райт назвал случайное изменение частоты аллелей при смене поколений в малых изолированных популяциях. В малых популяциях велика роль отдельных особей. Случайная гибель одной особи может привести к значительному изменению аллелофонда. Чем меньше популяция, тем больше вероятность флуктуации – случайного изменения частот аллелей. В сверхмалых популяциях по совершенно случайным причинам мутантный аллель может занять место нормального аллеля, т.е. происходит случайная фиксация мутантного аллеля.

В отечественной биологии случайное изменение частоты аллеля в сверхмалых популяциях некоторое время называли генетико-автоматическими (Н.П. Дубинин) или стохастическими процессами (А.С. Серебровский). Эти процессы были открыты и изучались независимо от С. Райта.

Дрейф генов доказан в лабораторных условиях. Например, в одном из С. Райта опытов с дрозофилой было заложено 108 микропопуляций – по 8 пар мушек в пробирке. Начальные частоты нормального и мутантного аллелей были равны 0,5. В течение 17 поколений случайным образом в каждой микропопуляции оставляли 8 пар мушек. По окончании эксперимента оказалось, что в 98 пробирках сохранился только нормальный аллель, в 10 пробирках – оба аллеля, а в 3 пробирках произошла фиксация мутантного аллеля.

В природных популяциях наличие дрейфа генов до сих пор не доказано. Поэтому разные эволюционисты по-разному оценивают вклад дрейфа генов в общий процесс эволюции.

Дрейф генов связан с утратой части аллелей и общим снижением уровня биоразнообразия. Следовательно, должны существовать механизмы, компенсирующие действие дрейфа генов.

Эффект Болдуина. Частным случаем дрейфа генов является эффект «бутылочного горлышка» – изменение частот аллелей в популяции.

Эффект бутылочного горлышка достигается за счет множества дополнительных ЭЭФ.

 

1. Популяционные волны.

Популяционными волнами (волнами жизни, волнами численности) называют колебания численности природных популяций. Различают следующие типы популяционных волн:

1.  Апериодические с высокой амплитудой. Характерны для некоторых организмов с высокой скоростью размножения в благоприятных условиях и высокой смертностью в неблагоприятных условиях (r–стратегия). Например, у майского жука в течение 5 лет численность популяции может изменяться в 1 миллион раз!

2.  Апериодические и периодические с низкой амплитудой. Характерны для некоторых организмов с низкой скоростью размножения и низкой смертностью независимо от условий (К–стратегия).

3.  Периодические с высокой амплитудой. Встречаются у самых разнообразных организмов. Часто носят периодический характер, например, в системе «хищник–жертва». Могут быть связаны с экзогенными ритмами. Именно этот тип популяционных волн играет наибольшую роль в эволюции.

Историческая справка. Выражение «волны жизни» («Wave of life»), вероятно, употребил впервые исследователь южноамериканских пампасов Хэдсон (W.H. Hudson, 1872–1873). Хэдсон отметил, что в благоприятных условиях (свет, частые ливни) сохранилась обыкновенно выгорающая растительность; обилие цветов породило обилие шмелей, затем мышей, а затем и птиц, кормившихся мышами (в т.ч., кукушек, аистов, болотных сов). С.С. Четвериков обратил внимание на волны жизни, отметив появление в 1903 г. в Московской губернии некоторых видов бабочек, не обнаруживаемых там на протяжении 30…50 лет. Перед этим, в 1897 г. и несколько позже, отмечалось массовое появление непарного шелкопряда, оголившего громадные площади лесов и нанесшего существенный вред плодовым садам. В 1901 г. отмечалось появление в значительном количестве бабочки–адмирала. Результаты своих наблюдений он изложил в кратком очерке «Волны жизни» (1905).

Если в период максимальной численности популяции (например, миллион особей) появится мутация с частотой 10–6, то вероятность ее фенотипического проявления составит 10–12. Если в период спада численности до 1000 особей носитель этой мутации совершенно случайно выживет, то частота мутантного аллеля возрастет до 10–3. Эта же частота сохранится и в период последующего подъема численности, тогда вероятность фенотипического проявления мутации составит 10–6.

 

2. Изоляция. Обеспечивает проявление эффекта Болдуина в пространстве.

В большой популяции (например, с численностью миллион диплоидных особей) частота мутации порядка 10–6 означает, что примерно одна из миллиона особей является носителями нового мутантного аллеля. Соответственно, вероятность фенотипического проявления этого аллеля в диплоидной рецессивной гомозиготе составляет 10–12 (одна триллионная).

Если эту популяцию разбить на 1000 малых изолированных популяций по 1000 особей, то в одной из изолированных популяций наверняка окажется один мутантный аллель, и его частота составит 0,001. Вероятность его фенотипического проявления в ближайших последующих поколениях составит (10–3)2=10–6 (одна миллионная). В сверхмалых популяциях (десятки особей) вероятность проявления мутантного аллеля в фенотипе возрастает до (10–2)2=10–4 (одна десятитысячная).

Таким образом, лишь за счет изоляции малых и сверхмалых популяций шансы на фенотипическое проявление мутации в ближайших поколениях возрастут в тысячи раз. В то же время, трудно предположить, чтобы в разных малых популяциях совершенно случайно проявился в фенотипе один и тот же мутантный аллель. Скорее всего, каждая малая популяция будет характеризоваться высокой частотой одного или немногих мутантных аллелей: или a, или b, или c и т.д.

Естественный отбор — процесс, изначально определённый Чарльзом Дарвином как приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. В соответствии с теорией Дарвина и современной синтетической теорией эволюции, основным материалом для естественного отбора служат случайные наследственные изменения — рекомбинация генотипов, мутации и их комбинации.


Дата добавления: 2018-09-20; просмотров: 367; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!