Использование базы для передвижения на большие расстояния



 

А не прекратится ли глобальное исследование Марса в период, пока будет строиться база? Ничего подобного! Как бы хорошо мы ни выбрали место для нее, с уверенностью можно сказать, что некоторые существенные ресурсы, необходимые для ее развития, окажутся доступны только на участках, удаленных на десятки, сотни или тысячи километров от нее. Для роста базы потребуются глобальное разведывание и транспортировка ресурсов. Это будут симбиотические отношения, в которых сама база станет обеспечивать возможность для передвижения исследователей на большие расстояния.

Ситуация в некотором смысле аналогична истории освоения Антарктики человеком. До Международного геофизического года (1957) исследование проводили посредством серии выездов, где каждая разведывательная группа использовала собственный корабль в качестве базы. Однако с начала того года было принято решение построить большую постоянно работающую базу в проливе Мак-Мердо. Сегодня она позволяет использовать и ремонтировать механизированные транспортные средства, вертолеты и самолеты, которые дают исследователям Антарктики доступ к любой части континента. Концентрируя ресурсы в одной точке, люди создали возможность проводить исследования гораздо шире и детальнее, чем когда-либо раньше, сохранив при этом традицию использования собачьих упряжек и лыж для вылазок от отдельных разведочных судов.

Местности на Марсе гораздо более суровые, чем даже в Антарктиде. Чтобы иметь действительно высокую мобильность, там придется летать.  В то время как воздушные шары и дозвуковые самолеты можно использовать, чтобы запускать малые роботизированные устройства в ветреное марсианское небо, единственными системами, достаточно надежными для транспортировки людей, станут аппараты с ракетными двигателями, способные прорываться через любую погоду. Это могут быть либо чисто баллистические устройства, выпрыгивающие из марсианской атмосферы, для того чтобы перебраться с одной стороны планеты на другую, либо крылатые ракетопланы, способные летать на сверхзвуковой скорости. Оба типа систем расходуют много топлива, а управление ими будет немыслимо, пока люди на Марсе не начнут изготавливать большое количество ракетного топлива.

Для примера рассмотрим марсианский пилотируемый баллистический прыгун с массой в 10 тонн, работающий на метаново-кислородных ракетных двигателях с удельным импульсом в 380 секунд. Скажем, мы хотим, чтобы он пролетел 2600 километров (то есть преодолел 45 градусов по широте или долготе на поверхности Марса), оставил на месте груз и налегке вернулся на базу. Для того чтобы выполнить этот маневр, устройству будет нужно отношение масс, близкое к 7, так что всего понадобится 60 тонн топлива. Если мы хотели бы осуществить полет на 15-тонном ракетоплане (крылья сделают его тяжелее) со сверхзвуковым отношением подъемной силы к лобовому сопротивлению (L/D), равным 4, отношение масс будет около 5, так что снова понадобятся 60 тонн ракетного топлива. Ясно, что не существует способа часто использовать эти виды транспортных средств на Марсе, в случае если их метаново-кислородное топливо или хотя бы только водородное сырье для его производства импортируется с Земли.

Необходимость перевозить достаточное количество топлива и для перемещения к месту назначения, и для возвращения из разведывательного вылета ограничивает максимальную дальность перемещения химических ракет на Марсе расстоянием в 4000 километров. Этот лимит может быть устранен, если транспортное средство станет самостоятельно производить топливо после посадки. Химические двухкомпонентные виды топлива не позволяют этого, потому что на их производство требуется слишком много энергии (около 5 кВт. ч на килограмм), и, следовательно, такие затратные системы не подойдут для частых запусков.

Однако в конце 1980-х годов я придумал концепцию, которую назвал «ядерная ракета на марсианском топливе» (ЯРМТ, или NIMF, nuclear rocket using indigenous martian fuel), которая, как мне кажется, способна устранить эту проблему [41, 42]. В случае ЯРМТ в качестве топлива используется простой диоксид углерода из марсианской атмосферы, которые нагревается за счет бортового ядерного ракетного двигателя для создания горячей выхлопной струи газа. Поскольку в данном случае ЯРД не превращает тепло в электричество, все приспособления для преобразования энергии, которые на самом деле составляют большую часть массы ЯРД, оказываются ненужными, и система становится компактной и легкой. Так как топливо здесь – обычный диоксид углерода, который можно добыть при низких затратах энергии (менее 0,3 кВт. ч на килограмм) путем закачивания из атмосферы, на борту понадобится не так много электроэнергии, так что все оборудование для химического синтеза также оказывается ненужным. Горячий диоксид углерода нельзя назвать высококлассным ракетным топливом, удельный импульс будет около 260 секунд – это все, на что можно рассчитывать. Но старателю нужен мул, способный есть горный кустарник, а привередливый скакун, предпочитающий отборный корм, в горах будет бесполезен. ЯРМТ – по существу, гораздо более мощный и продвинутый вариант газового прыгуна, рассмотренного в главе 6, – это идеальное разведывательное судно, поскольку для его питания сгодится все, что можно найти на месте. Ракетные транспортные средства, оснащенные этим типом двигателей, обеспечат исследователям Марса полную мобильность в масштабах планеты.

Преимущества режима работы ЯРМТ многочисленны. Несмотря на меньший удельный импульс, тот факт, что такой ракете не нужно везти с собой топливо на обратную дорогу, делает возможным охват всей планеты, в то время как даже самые лучшие химические системы ограничены в дальности передвижения. ЯРМТ обладает еще одним преимуществом: так как она сама производит топливо, то гораздо меньше полагается на энергетические ресурсы базы, чем химические системы. Производство 60 тонн метаново-кислородной смеси, необходимой химической ракетной системе, как описано в начале данного раздела, на 123 дня полностью займет имеющийся на базе реактор на 100 кВт электрической энергии. А вот на отправку ЯРМТ база вообще не потратит ни энергии, ни даже части запасов водорода или воды. Единственное, что потребуется в таком случае, – продовольствие для экипажа, техническое обслуживание и ремонт. Еще одно преимущество работы ЯРМТ на Марсе – это ее уникальная способность быстро доставлять большие количества груза в очень удаленные районы. Если срочно нужны 20 тонн сульфида меди, 40-тонная грузовая ЯРМТ слетает на другую сторону планеты и заберет эту руду Никакая другая система не обеспечит такой производительности.

Вы можете вспомнить (я писал об этом в главе 3), что в период до разработки «Марс Директ» я отстаивал архитектуру пилотируемой миссии на Марс на основе одного запуска тяжелой ракеты-носителя, использование ЯРД для вывода корабля на траекторию к Марсу и использование ЯРМТ, для того чтобы исследовать планету, а затем вернуться. Я отказался от этих идей в пользу «Марс Директ», потому что мне стало ясно, что технологии, требуемые для ЯРД и ЯРМТ, слишком сложны, чтобы сформировать на их основе первые исследовательские экспедиции на Марс. Миссии с их использованием казались очень привлекательными, но время, необходимое для их разработки, вынудило бы слишком далеко отложить первый полет. Тем не менее, технология ЯРМТ дает большие возможности для развития базы на Марсе. Таким образом, в контексте расширенной программы исследования было бы целесообразно приложить значительные усилия, чтобы ввести в игру транспортные средства на основе ЯРМТ. Тогда, после того как через несколько лет развития базы они будут готовы к эксплуатации, люди смогут иметь доступ к ресурсам в любой точке планеты.

 

Начало колонизации

 

Первые исследователи Марса проведут 18 месяцев в ожидании, когда первое удачное стартовое окно откроется для их возвращения домой. Но по мере развития базы и улучшений условий жизни на ней некоторые будущие астронавты могут решить продлить срок своего пребывания на планете сверх полуторагодичной вахты – до четырех, шести лет и более. Спонсоры базы, вероятно, предложат крупные финансовые бонусы для тех, кто решится на продление срока. В конце концов, большая часть расходов базы станет уходить на перемещение людей на Марс и обратно. Чем дольше будет работать база, тем больше окажется стимул развивать новые формы межпланетной транспортировки, чтобы уменьшить затраты на логистику еще сильнее. Это может сделать правительство, или, вероятно, это будет реализовано через систематическую поставку грузов с Земли на базу посредством конкурирующих частных компаний – так или иначе, но это будет сделано обязательно. Полеты на Марс год от года станут дешеветь, а еще больше подешевеет поддержание жизни и работы астронавтов, находящихся на Красной планете. Поскольку все больше людей станет прибывать на планету и оставаться там на длительное время, база все больше станет напоминать город.

Так начнется колонизация Марса.

 

 

Глава 8

Колонизация Марса

 

Это предложение, сделанное публично и относившееся ко всем, выявило много различных мнений среди людей и вызвало многие страхи и сомнения в их рядах. Некоторые, руководствуясь личными причинами, потрудились вдохновить остальных; другие из-за своих опасений спорили, приводя множество доводов, необоснованных и несостоятельных; нам предстояло большое дело, и оно было связано со многими невообразимыми угрозами и опасностями…

Ответ на эти заявления был таков: все великие и благородные поступки сопровождаются большими трудностями, которые должно принять и преодолеть с подобающим мужеством.

Губернатор Уильям Брэдфорд. История колонии Плимут, 1621

 

В предыдущих главах мы рассмотрели процесс освоения и заселения Марса в основном с технической точки зрения. Мы узнали, что, используя технологии XX века, первые исследователи могут достичь Марса примерно через десять лет при затратах, которые заведомо по силам США. Мы пришли к выводу что, если приложить больше усилий, через несколько десятилетий после первой высадки на планете на Марсе можно будет создать базу способную поддерживать жизнь десятков или даже сотен людей – тех людей, которые затем приступят к освоению местных ресурсов и когда-нибудь сделают Марс домом для миллионов.

Таким образом, мы подошли к сути дела: фазе заселения Марса. Действительно ли Марс может быть колонизирован? С технической точки зрения, почти нет сомнений: в конечном счете мы сумеем сделать на Марсе почти все, что захотим, и даже, как мы увидим в следующей главе, терраформировать его – превратить из холодного, засушливого мира в теплую и влажную планету. Но насколько далеко мы имеем право зайти? В то время как фазы разведывания и строительства базы могут и, вероятно, должны быть выполнены за счет государственного финансирования, в фазе заселения Марса на первый план выходит экономика. Если марсианская база, на которой проживает даже несколько сотен человек, вероятно, сможет существовать за счет правительственных средств, то развивающееся марсианское общество, способное разрастись до сотен тысяч человек, – уже нет. Чтобы стать самостоятельной, настоящая марсианская цивилизация должна быть или полностью автаркической (что возможно только в далеком будущем), или способной произвести какой-то товар на экспорт, что позволило бы оплачивать импортируемые товары.

Этот вопрос станет ключевым для будущего Марса, и не только для человеческой цивилизации на планете, но и для марсианской природы. Если нам удастся создать жизнеспособную марсианскую колонию, численность людей будет расти, а вместе с ней – наши возможности изменять и преобразовывать новый мир. Марс когда-то был планетой с умеренным климатом, и если приложить достаточно усилий, он может стать таким снова. Для поселенцев преимущества жизни на планете после терраформирования настолько очевидны, что нет сомнений: если будет колонизация, то будет и терраформирование. Поэтому, в конечном счете, осуществимость терраформирования зависит от того, насколько экономически успешными окажутся человеческие колонии на Марсе.

Главное возражение против заселения и терраформирования Марса сводится к следующему: такие проекты могут быть осуществимы с технологической точки зрения, но оплатить их нам не по силам. Марс расположен далеко, туда трудно добраться, и он представляет собой враждебную среду, которая не содержит никаких ресурсов очевидной экономической ценности. Звучит убедительно, но следует отметить, что те же аргументы когда-то приводились в пользу полной непрактичности заселения европейцами Северной Америки и Австралии. Конечно, технологические и экономические проблемы, с которыми столкнутся колонизаторы Марса в XXI веке, очень сильно отличаются от тех, которые пришлось преодолеть при колонизации Нового Света. Тем не менее я убежден, что эти аргументы несостоятельны из-за той же ошибочной логики и отсутствия понимания, из-за которых европейские правительства многих стран в течение четырехсот лет после Колумба недооценивали значимость колониальных поселений (в отличие от торговых постов, плантаций и добывающих видов деятельности).

В период своего мирового господства испанцы игнорировали Северную Америку; для них она была всего лишь огромной бесполезной дикой территорией. В 1781 году, когда Корнуоллис держал осаду в Йорктауне, англичане направили свой флот в Карибское море, чтобы захватить несколько островов с высокодоходными сахарными плантациями у французов. В 1803 году Наполеон Бонапарт продал треть современной территории Соединенных Штатов за два миллиона долларов. В 1867 году Александр II продал Аляску по схожей скромной цене. О существование Австралии в Европе узнали за двести лет до того, как там появилась первая колония, а европейские правители даже не пытались претендовать на континент до 1830 года. Эти примеры близорукого управления государством сегодня стали легендарными. Тем не менее поведение современных правителей говорит о том, что близорукость никуда не делась. Я считаю, что двести лет спустя нынешнее равнодушие политиков к Марсу и другим небесным телам будет казаться такой же нелепой ошибкой.

Почти невозможно узнать, какие предприятия будут экономически жизнеспособными через двадцать лет, а уж тем более через пятьдесят или сто. Тем не менее в этой главе я постараюсь показать вам, как и почему экономика колонизации Марса может начать работать и почему успех колонизации в конечном итоге станет залогом нашей дальнейшей космической экспансии. Хотя я буду время от времени возвращаться к историческим аналогиям, мои аргументы будут основаны не на историческом опыте, а на особенностях самого Марса, его уникальных характеристиках, ресурсах, технологических требованиях и его связи с другими важными телами нашей Солнечной системы.

 

Уникальность Марса

 

Когда вы предлагаете какое-то новое начинание, например составляете бизнес-план, обычно необходимо собрать и перечислить преимущества вашего продукта или услуги. Что такого у вас есть, что конкурент предложить не может? Хорошо, что особенного есть на Марсе?

Среди внеземных тел в нашей Солнечной системе Марс выделяется тем, что он обладает всеми необходимыми ресурсами, чтобы не только поддерживать жизнь колонистов, но и создать новую ветвь человеческой цивилизации.  Эта уникальность проявляется особенно отчетливо, если сравнить Марс с нашей Луной, которую чаще всего называют местом, где мог бы поселиться человек.

В отличие от Луны на Марсе много углерода, азота, водорода и кислорода в биологически легкодоступных формах, таких как газообразный диоксид углерода, газообразный азот, водяной лед и вечная мерзлота. Углерод и азот имеются на Луне в ничтожных количествах: несколько частиц на миллион. Там есть некоторое количество водяного льда, но его можно найти только в постоянно затененных ультрахолодных (-230 °C) полярных кратерах – таких холодных местах, что их содержимое практически недоступно за пределами сред с нужными условиями. Кислород на Луне имеется в изобилии, но только в виде сильно связанных оксидов, таких как диоксид кремния (SiO2), оксид железа (Fe2O3), оксид магния (MgO) и оксид алюминия (Al2О3), которые требуют очень высокоэнергетических процессов для восстановительных реакций. Современные данные показывают, что, если бы Марс был гладкими и весь его лед и вечную мерзлоту растопили в жидкую воду, планета покрылась бы океаном глубиной около 100 метров. Это резко контрастирует с условиями на Луне, поскольку на ней так сухо, что, если бы там обнаружили бетон, лунные колонисты добывали бы его, чтобы получать воду. Таким образом, если растения и могут быть выращены в теплицах на Луне (маловероятное предположение, как мы убедились), то большую часть ресурсов для их выращивания придется импортировать.

Также на Луне примерно в два раза меньше металлов, представляющих промышленный интерес (медь, никель и цинк, например), а также многих других нужных элементов, таких как сера, фтор, бром, фосфор и хлор. На Марсе все они имеются в изобилии. Более того, на Марсе, как и на Земле, протекали гидрологические и вулканические процессы, которые, вероятно, объединили различные элементы в локальные скопления богатых минеральных руд. Ученые сравнили геологическую историю Марса с геологической историей Африки [43] и сделали очень оптимистичные выводы по поводу его минеральных богатств. На Луне же не было ни рек и океанов, ни вулканов, и в результате она в основном состоит из мусорных пород с очень небольшим содержанием полезных руд.

Электроэнергию можно производить и на Луне, и на Марсе, используя солнечные батареи, и здесь преимущества чистого неба Луны и ее близости к Солнцу в какой-то степени уравновешивают потребность в больших хранилищах энергии, связанного с 28-дневным суточным циклом Луны. Но, если мы захотим производить солнечные панели, чтобы создать собственную расширяющуюся энергетическую базу, Марс имеет огромное преимущество, так как только там есть большие запасы углерода и водорода, необходимых для производства чистого кремния, который идет на изготовление фотогальванических панелей и другой электроники. Кроме того, у Марса есть потенциал, связанный с энергией ветра, в то время как использовать ее на Луне принципиально невозможно. Но и солнечная энергия, и энергия ветра имеют сравнительно скромный потенциал – десятки или в лучшем случае сотни киловатт. Чтобы создать полноценную цивилизацию, понадобятся более богатые запасы энергии, и они доступны на Марсе, как в краткосрочной, так и в среднесрочной перспективе благодаря его геотермальным ресурсам, которые позволяют во множестве строить электростанции класса 10 МВт (10 000 ватт). В долгосрочной перспективе на Марсе будет процветать экономика, основанная на использовании его богатых запасов дейтериевого топлива для термоядерных реакторов. Дейтерий на Марсе встречается в пять раз чаще, чем на Земле, и в десятки тысяч раз чаще, чем на Луне.

Но, как мы уже обсуждали в главе 7, самая большая проблема на Луне, как и на всех других небесных телах без атмосферы и в предлагаемых искусственных колониях в открытом космосе, состоит в том, что солнечного света недостаточно для выращивания сельскохозяйственных культур. Один акр растений на Земле требует 4 МВт энергии солнечного света, а на квадратный километр понадобится 1000 МВт. Весь мир целиком не производит количества электроэнергии, которого будет достаточно для освещения ферм сельскохозяйственного гиганта США – штата Род-Айленд. Культивирование растений под электрическим светом просто экономически безнадежно. Но, чтобы использовать естественный солнечный свет на Луне или любом другом небесном теле без атмосферы, необходимо строить теплицы из материала достаточной толщины, чтобы оградить растения от солнечных вспышек, а это требование чрезвычайно увеличивает затраты на создание пашни. И от нее все равно не было бы толку, потому что растения не могут адаптироваться к суточному циклу длиной 28 дней.

Марсианская атмосфера имеет достаточную толщину, чтобы защитить от солнечных вспышек посевы, выращенные на поверхности планеты. Поэтому тонкостенные надувные пластиковые теплицы, защищенные негерметичным, устойчивым к ультрафиолетовому излучению куполом из жесткого пластика, помогут нам быстро создать пахотные земли на поверхности Марса. Даже если исключить проблему солнечных вспышек и суточного цикла длиной в месяц, такие простые теплицы оказались бы бесполезны на Луне, так как внутри них было бы нестерпимо жарко. На Марсе же сильный парниковый эффект, созданный такими куполами, обеспечит внутри оптимальный умеренный климат. Такие купола диаметром до 50 метров будут достаточно легкими, чтобы на начальном этапе привозить их с Земли, а затем можно начать изготавливать их на Марсе из местных материалов. Поскольку на Марсе есть все ресурсы, необходимые для производства пластмассы, можно быстро создать и установить сети таких куполов диаметром от 50 до 100 метров, тем самым делая доступными большие участки поверхности планеты и для жилья, где можно обойтись без скафандра, и для сельскохозяйственных площадок. Это только начало, потому что, как мы увидим в главе 9, в конечном итоге у людей появится возможность увеличить толщину атмосферы Марса. Для этого нужно вызвать искусственное глобальное потепление, высвободив парниковые газы из реголита. Тогда жилые купола можно будет делать практически любого размера, поскольку исчезнет проблема с перепадами давления между внутренней и внешней средами. Более того, тогда можно будет выращивать специально выведенные культуры и за пределами куполов.

Следует отметить, что Марс – единственное известное нам небесное тело, где колонисты смогут жить на поверхности, а не в туннелях и свободно передвигаться и выращивать урожай при свете дня. Марс – это место, где люди могут жить, заводить детей, увеличивая численность колонии, и обеспечивать себя всем необходимым благодаря местным ресурсам. То есть Марс – это место, где может появиться настоящая человеческая цивилизация, а не старательский или научный форпост. И, что немаловажно для межпланетной торговли, Марс и Земля – единственные места в Солнечной системе, где люди могут выращивать сельскохозяйственные культуры на экспорт.

 

Межпланетная торговля

 

Марс является лучшим объектом для колонизации в Солнечной системе, поскольку на сегодняшний день он имеет наибольший потенциал для самообеспечения. Тем не менее, даже если роботизированные технологии производства будут развиваться очень быстрыми темпами, Марс станет полностью самодостаточным только тогда, когда численность его популяции будет исчисляться в миллионах.  Таким образом, потребность в импорте специализированных промышленных товаров с Земли на Марс останется на ближайшие столетия. Эти товары могут иметь сравнительно небольшую массу, так как действительно сложными в изготовлении будут только небольшие детали даже самых высокотехнологичных товаров. Тем не менее за эти небольшие замысловатые предметы нужно платить, и высокие затраты на запуск с Земли и межпланетный перелет значительно увеличат их цену. Что же Марс может экспортировать на Землю в ответ?

Именно этот вопрос заставил многих думать, что колонизация Марса трудновыполнима или по крайней мере уступает по выполнимости колонизации Луны. Например, много раз говорилось о том, что на Луне есть запасы гелия-3, изотопа, не найденного на Земле, который может иметь очень большое значение как топливо для термоядерных реакторов второго поколения. На Марсе нет запасов гелия-3. С другой стороны, из-за сложной геологической истории Марса на нем может присутствовать концентрированная минеральная руда с гораздо большим содержанием драгоценных металлов, чем в настоящее время обнаруживается на Земле, – потому что земные руды сильно истощены человеком за последние пять тысяч лет. В совместной статье с Дэвидом Бейкером в 1990 году я показал, что, если на Марсе доступны концентрированные запасы металлов, не менее ценных, чем серебро (то есть само серебро, германий, гафний, лантан, церий, рений, самарий, галлий, гадолиний, золото, палладий, иридий, рубидий, платина, родий, европий, а также множество других), их потенциально можно будет транспортировать на Землю со значительной выгодой [44]. Многоразовое транспортное средство с одноступенчатым двигателем, предназначенное для старта с поверхности Марса, такое как ЯРМТ (о нем рассказывается в главе 7), могло бы перевозить грузы на орбиту Марса для транспортировки на Землю с помощью любых недорогих одноразовых химических двигательных ступеней, изготовленных на Марсе, или многоразовых челночных солнечных межпланетных кораблей, или межпланетных кораблей с магнитными парусами (эти передовые двигательные системы рассматриваются в дополнительном разделе в конце этой главы). Существование таких драгоценных металлических руд, однако, по-прежнему остается под вопросом.

Но есть один промышленный ресурс, который точно существует на Марсе повсеместно в больших количествах, – дейтерий, тяжелый изотоп водорода. На Земле на каждый миллион атомов водорода приходится 166 атомов дейтерия, а на Марсе – 833. Дейтерий – не только ключевое топливо для термоядерных реакторов первого и второго поколений, но и важный ресурс для современной атомной энергетики. Если у вас есть достаточное количество дейтерия, вы можете замедлить ядерный реактор «тяжелой» водой вместо обыкновенной «легкой», и такой реактор будет работать на природном уране, не требующем обогащения. Ядерные реакторы канадского производства, известные как CANDU, сегодня работают по этому принципу. Проблема, однако, заключается в том, что придется подвергнуть электролизу 30 тонн обычной «легкой» воды, чтобы получить достаточное количество водорода для производства одного килограмма дейтерия, и пока не будут доступны очень большие количества дешевой гидроэлектрической энергии, процесс останется непозволительно дорогим. (Именно поэтому во время Второй мировой войны для проекта немецкой атомной бомбы пришлось располагать производство тяжелой воды рядом с большой норвежской плотиной ГЭС в Веморке. Когда отряд норвежского сопротивления и «Би-17» Соединенных Штатов разрушили это место в серии налетов в 1943 году, немецкая ядерная программа фактически была уничтожена.) Даже с дешевой электроэнергией дейтерий остается очень дорогим, его текущая рыночная стоимость на Земле составляет около 10000 долларов за килограмм, что примерно в 12 раз дороже, чем серебро (27 долларов за унцию), на 25 % дороже золота (1200 долларов за унцию). И это сегодня, пока мы стоим еще только на пороге появления промышленного термоядерного синтеза. После того как термоядерные реакторы начнут широко использоваться, цены на дейтерий будут расти. Как уже говорилось в предыдущих главах, большая часть энергии на марсианской базе пойдет на электролиз воды, чтобы поддерживать различные процессы жизнеобеспечения и химического синтеза. Если этап выделения дейтерия применять к водороду, полученному путем электролиза, до того как он возвращается обратно в химические реакторы, тогда каждые 6 тонн марсианской электролизированной воды могут обеспечить около одного килограмма дейтерия в качестве побочного продукта. Каждому человеку на Марсе потребуется около 10 тонн электролизированной воды в земной год. Если для технических целей электролизированной воды необходимо в два раза больше, в общей сложности для марсианской колонии на 200 000 человек ее потребуется 6 миллионов тонн в год. Это позволит производить в год 1000 тонн дейтерия, чего достаточно для получения 11 тераватт электроэнергии – примерно столько же, сколько все человечество потребляет сегодня. При современных ценах на дейтерий это могло бы приносить годовой экспортный доход в 10 миллиардов долларов.(Например, Новая Зеландия получила 26 миллиардов долларов валового экспорта в 2009 году, хотя население страны составляет всего 4,3 миллиона человек.) При современной средней стоимости электроэнергии в 7 центов/кВт. ч общая стоимость энергии, производимой на Земле, в результате составит около 7 триллионов долларов в год.

Идеи могут стать еще одним экспортным товаром для марсианских колонистов. Точно так же, как огромный дефицит рабочей силы в колониальной Америке XIX века привел к появлению «изобретательности янки», крайняя нехватка рабочей силы в сочетании с технологической культурой поможет развить марсианскую изобретательность. Благодаря этому будут множиться изобретения в сферах энергетики, автоматизации и робототехники, биотехнологий, а также многих других. Марсианские изобретения, лицензированные на Земле, позволят финансировать Красную планету, а также радикально повысить уровень земной жизни – так в XIX веке американские изобретения изменили Европу и в конечном итоге остальной мир.

Изобретения новой цивилизации, появляющиеся в силу необходимости, могут сделать Марс богатым, но есть и другие способы. Один из них – торговля полезными ископаемыми, которые можно добывать в поясе астероидов, лежащем между орбитами Марса и Юпитера.

Чтобы понять эту идею, необходимо рассмотреть энергетические отношения между Землей, Луной, Марсом и главным поясом астероидов. Пояс астероидов  вступает здесь в игру, потому что, как известно, содержит обширные запасы очень богатых металлических руд  в условиях низкой гравитации, что делает их потенциально легкими для экспорта на Землю [36]. Например, Джон Льюис из Университета штата Аризона рассмотрел случай простого астероида диаметром всего один километр. Масса такого астероида составит всего 2 миллиарда тонн, из которых 200 миллионов тонн будут приходиться на долю железа, 30 миллионов тонн – высококачественного никеля, 1,5 миллиона тонн – стратегически важного кобальта и 7500 тонн – смеси металлов платиновой группы, средняя стоимость которой при современных ценах может достигать 20 000 долларов за килограмм. В сумме это составит 150 миллиардов долларов для одной только платины. В этом почти нет сомнений, так как у нас имеется много образцов астероидов в виде метеоритов. Как правило, метеоритное железо содержит от 6 до 30 % никеля, от 0,5 до 1 % кобальта и концентрацию металлов платиновой группы по меньшей мере в 10 раз выше, чем в земных рудах. Более того, так как астероиды также содержат немало углерода и кислорода, все эти вещества могут быть выделены из астероида и отделены друг от друга с использованием химических процессов на базе моноокисида углерода, которые мы обсудили в главе 7 для очищения металлов на Марсе. На сегодня известно около 5000 астероидов, из которых около 98 % находятся в главном поясе между Марсом и Юпитером на среднем расстоянии от Солнца примерно 2,7 астрономической единицы, или а.е. (Земля находится на расстоянии 1 а.е. от Солнца). Эта группа в главном поясе включает все известные астероиды, находящиеся в пределах орбиты Юпитера, с диаметрами более 10 километров, сотни диаметром 100 километров и одно тело – Цереру – с диаметром около 950 километров. За исключением некоторого количества мелких объектов, которые подходят к Солнцу ближе, чем Земля, и нескольких замеченных за Юпитером, остальные 2 % астероидов, все малого размера, имеют орбиты, лежащие между орбитами Земли и Марса. Однако число околоземных астероидов, соответствующее 2 % от общего количества, является сильно завышенным в сравнении с количеством астероидов главного пояса, так как относительная близость первых к Земле и Солнцу делает их гораздо более удобными для обнаружения. Разумная оценка будет примерно такой: астероиды главного пояса превосходят по численности околоземную группу по меньшей мере в тысячу раз. Из близких к Земле астероидов около 90 % располагаются ближе к Марсу чем к Земле.

Из примера Льюиса должно стать ясно то, что все эти астероиды вместе представляют огромный экономический потенциал. Хотя в последнее время было сделано многое, чтобы подчеркнуть важность астероидов околоземной группы (особенно в связи с постепенным осознанием того, что, если мы не будем развивать космические программы по защите от таких астероидов, один из них, скорее всего, когда-нибудь врежется в нашу планету и уничтожит человеческую расу), относительные количества астероидов в двух классах с очевидностью показывают, что добыча будет сосредоточена в главном поясе.

Шахтеры, работающие на астероидах, не смогут производить большую часть необходимого им продовольствия на месте. Таким образом, возникнет потребность в импорте продуктов питания и других необходимых товаров или с Земли, или с Марса. Как показано в табл. 8.1 ниже, у Марса в этом отношении будет масса преимуществ. Они связаны с тем, что значения ΔV для запуска реактивной ракеты с Марса гораздо меньше, чем для запуска с Земли, и как следствие, отношение масс (полная масса заправленного космического корабля, деленная на его сухую массу), которое требуется для космических аппаратов, покидающих Марс, также намного меньше.

В таблице 8.1 в качестве примера рассматривается Церера, крупнейший астероид,[29] расположенный самом центре главного пояса. Однако вы заметите, что я также упоминаю Луну как потенциальный порт назначения. Несмотря на то что она намного ближе к Земле, с точки зрения реактивного движения, гораздо легче достичь Луны с Марса! Для такого запуска требуется отношение масс всего в 12,5, в то время как для полета с Земли на Луну это отношение должно составлять 57,6. И по той же причине путешествия с Земли или с Марса практически на любой околоземный астероид будут менее удобными, чем к астероидам основной группы главного пояса.

 

Таблица 8.1.  Перелеты во внутренней Солнечной системе

 

Все строки в табл. 8.1, за исключением последних двух, рассчитаны для системы транспортировки с метаново-кислородными (СН4/O2) двигателями с удельным импульсом в 380 секунд и ΔV, подходящими для траекторий с использованием высокоэффективных химических двигательных установок. Они были выбраны потому, что смесь метана и кислорода обладает самым высоким удельным импульсом из всех видов топлива, которые можно хранить в космосе, и ее можно изготовить на Земле, на Марсе или на углеродистом астероиде. Топливо из смеси водорода и кислорода хоть и имеет более высокий удельный импульс (450 секунд), не может долго храниться в космосе. Более того, оно непригодно для дешевых многоразовых космических транспортных систем, поскольку его стоимость почти на порядок выше, чем для смеси метана и кислорода, и его объемность затрудняет транспортировку топлива на орбиту, если применять многоразовые одноступенчатые ракеты РОСД (но это позволяет использовать его для действительно недорогих ракет для доставки с Земли на НОО). Последние две записи в таблице рассчитаны для ядерных электрических ракет (ЯЭР): для движения в космосе предлагается аргонное топливо с удельным импульсом в 5 тысяч секунд, доступное и на Земле, и на Марсе, а для запуска с поверхности к НОО – смесь метана и кислорода. Такие системы РОСД и ЯЭР, хотя и кажутся сегодня фантастикой, в будущем обещают стать надежной основой для технологии межпланетных перевозок.

Можно видеть, что, если использовать исключительно химические системы двигателей, то отношение масс, необходимое для того, чтобы доставить сухую массу к поясу астероидов с Земли, в 14 раз больше, чем если производить запуск с Марса. Это означает, что при полете с Марса на Цереру отношение массы полезной нагрузки к взлетной массе ракеты по-прежнему гораздо больше, чем при полете с Земли на Цереру. На самом деле расчеты в табл. 8.1 позволяют сделать вывод, что выгодная торговля между Землей и Церерой (или любым другим телом в главном поясе астероидов) с использованием химических двигателей скорее всего невозможна, тогда как между Марсом и Церерой организовать ее не составит большого труда. Так что из таблицы видно, что отношение масс для доставки грузов с Марса на Луну почти в пять раз выше, чем для полетов с Земли на Луну.

Если появляются ядерные электрические ракеты, расклад меняется, но не очень значительно. Марс по-прежнему обладает семикратным преимуществом перед Землей с позиции отношения масс, а значит, отношение полезной нагрузки к взлетной массе ракеты почти в сто раз выше для полета с Марса, чем с Земли.

Но это всего лишь отношения масс, а как отмечалось выше, дело не только в них. Теперь давайте сравним от начала до конца некоторые миссии, стартующие к Церере с Земли или с Марса. Сравнение показателей приведено в табл. 8.2, причем и для варианта только с химической системой двигателей, и для сочетания химической и ЯЭР транспортных систем. Обе миссии доставляют 50 тонн груза. Кроме того, и ЯЭР, и химическая система должны включать топливные баки, массу которых я оценил в 7 % от массы топлива, которое они несут. Для транспортных средств, работающих на пути от поверхности к орбите, я использовал метан-кислородные РОСД и предположил, что транспортные средства должны иметь сухую массу (на тепловую защиту, двигатели, шасси и т. д.), исключая массу баков, равную массе их полезной нагрузки, то есть 50 тонн. Химическая межпланетная транспортная система может быть более хрупкой, так что я назначил им сухую инертную массу, исключая массу баков, равную 20 % от массы полезной нагрузки. Ядерные электрические двигатели в табл. 8.2 требуют 10 мегаватт электрической мощности для полета на Цереру с Марса и 30 мегаватт электрической мощности для полета с Земли, для каждой ЯР системы отношение массы к мощности составит 5 тонн/МВт. (Это отношение гораздо ниже, чем 40 тонн/МВт для проектируемого реактора на 100 кВт энергии, который мы собираемся использовать в миссии «Марс Директ», но, учитывая гораздо больший размер устройства и более футуристический контекст, можно считать это предположение разумным.) Различные номинальные мощности дают обеим системам примерно равные соотношения мощность/масса. Тем не менее система ЯЭР, стартовав с Земли, по-прежнему должна поддерживать работу двигателя в 2,4 раза дольше. Если вы хотите увеличить номинальную мощность отправляемого с Земли ядерного двигателя, чтобы он работал так же долго, как двигатель, отправляемый с Марса, то масса миссии, стартующей с Земли, устремилась бы к бесконечности. В таблице 8.2 массы приведены для полной миссии. Ясно, что общие требования к запуску, вероятно, будут разделены между множеством ракет-носителей.

 

Таблица 8.2.  Масса товарных грузовых миссий к главному поясу астероидов (тонны)

 

Как видите, общая масса запуска для миссий, начинающихся на Марсе, примерно в 50 раз меньше, чем для вылетов с Земли, независимо от того, какую двигательную технологию мы используем для межпланетного перелета. Если выбранная ракета-носитель имеет стартовую массу в 1000 тонн, потребуется 107 запусков, чтобы объединить все грузовые миссии на смеси метана и кислорода, запущенные с Земли, и только два запуска с Марса. Даже если бы стоимость топлива и других деталей миссии на Марсе была бы в 10 раз выше, чем на Земле, то все равно оставалась бы чрезвычайно выгодной. Более того, приведенный мной анализ предполагает, что корабли вернутся из пояса астероидов без груза. Если дополнительно обременить миссию достаточным количеством топлива, чтобы доставить добытый металл с астероида без дозаправки на Марсе, миссия с Земли станет еще более безнадежной.

Отсюда следует простой вывод: все, что должно быть отправлено к поясу астероидов и может быть произведено на Марсе, следует производить на Марсе.

Схема будущей межпланетной торговли, таким образом, становится очень четкой. Образуется «торговый треугольник»: Земля поставляет высокотехнологичные промышленные товары на Марс, Марс поставляет низкотехнологичные промышленные товары и продовольствие в пояс астероидов и, возможно, к Луне, астероиды поставляют металлы (а Луна, возможно, гелий-3) обратно на Землю. Эта схема аналогична той, что сложилась между Великобританией, ее североамериканскими колониями и Вест-Индией во время колониального периода. Великобритания отправляла промышленные товары в Северную Америку, американские колонии поставляли продовольственное сырье и ремесленные изделия в Вест-Индию, а Вест-Индия посылала сахар в Великобританию. Сходный торговый треугольник, включающий Великобританию, Австралию и Моллукские острова, также поддерживал британскую торговлю в Ост-Индии в XIX веке.

 

Заселяя Марс

 

Из-за сложности межпланетных путешествий колонизация Марса может казаться невыполнимой задачей. Однако колонизация, по определению, есть путешествие в один конец, и именно тот факт, что колонии в новом мире необходимо обеспечить успех, позволит транспортировать большие количества людей.

Рассмотрим две модели того, как люди могли бы эмигрировать на Марс: при государственном и частном финансировании.

Государственное финансирование сделало бы технические средства, необходимые для массового переселения на Марс, доступными уже сегодня. На рисунке 8.1 мы видим одну из версий концепции, которую можно использовать для транспортировки мигрантов на Марс. Тяжелая ракета-носитель на базе конструкции шаттла поднимает 145 тонн (почти как у «Сатурн-5») на НОО, затем ядерная ракета (например, такая, какую продемонстрировали в Соединенных Штатах в программе NERVA в 1960-х годах) с удельным импульсом в 900 секунд забрасывает 70-тонный обитаемый модуль повышенной вместимости на семимесячную траекторию к Марсу. Прибыв на Марс, модуль использует свою коническую оболочку как систему парашютов для аэродинамического торможения, а затем спускается с помощью более или менее обычного парашюта и производит посадку, используя собственный набор метаново-кислородных двигателей.

Увеличенный жилой модуль имеет 8 метров в диаметре и состоит из четырех жилых этажей общей площадью 200 квадратных метров, что позволит удобно разместить 24 человека и во время пребывания в космосе, и на Марсе. Дополнительная площадь доступна на пятом (верхнем) этаже, после того как тот освободят от груза по прибытии на Марс. Таким образом, за один запуск ракеты-носителя с Земли к Марсу можно отправить 24 человека, снабженных продовольствием и инструментами.

Теперь предположим, что начиная с 2030 года каждый год с Земли в среднем запускаются четыре такие ракеты-носителя. Если далее мы введем несколько обоснованных демографических предположений, можно будет рассчитать демографические кривые для Марса. Результаты показаны на рис. 8.2. Рассматривая график, мы видим, что при таких усилиях (и с технологическим оснащением, замороженным на уровне начала XXI века) человеческая популяция Марса в предстоящем столетии будет расти приблизительно в пять раз медленнее, чем население колониальной Америки в XVII и XVIII веках.

 

Рис. 8.1. Увеличенная ядерная тяжелая ракета-носитель, способная транспортировать с Земли на Марс 24 колониста

 

Это само по себе очень важный результат. Это означает, что расстояние до Марса и задача транспортировки, с ним связанная, не станут основным препятствием для человеческой цивилизации на Красной планете. Скорее, ключевыми будут вопросы использования ресурсов, выращивания еды, строительства жилья и изготовления различных полезных товаров на поверхности Марса (об этом мы уже говорили в главе 7). Более того, прогнозируемые темпы роста населения хоть и не очень велики, но в историческом масштабе выглядят довольно значительно . И если предположить, что запуск обойдется в 1 миллиард долларов, программу стоимостью в 4 миллиарда долларов в год в течение какого-то времени могла бы стабильно финансировать любая крупная земная держава.

Однако при цене запуска около 1 миллиарда долларов расходы на одного иммигранта будут составлять 40 миллионов долларов. Такие расходы по силам государству (какое-то время), но не частным лицам или группам. Если мы хотим построить марсианское общество на энтузиазме и энергии большого числа иммигрантов, стремящихся оставить свой след в новом мире, плата за перевозку должна будет стать значительно ниже. Поэтому давайте изучим альтернативную модель, чтобы понять, как можно сделать ее более выгодной.

 

Рис. 8.2. Колонизация Марса по сравнению с колонизацией Северной Америки. Анализ предполагает, что число иммигрантов составит 100 человек в год, начиная с 2030-го, и каждый год будет увеличиваться на 2 %, количество мужчин и женщин среди них одинаково. Возрасты всех иммигрантов от 20 до 40 лет. Предполагается, что средняя рождаемость составит 3,5 ребенка на семью, а уровень смертности – 0,1 % в год для возраста от 0 до 59 лет, 1 % в год для возраста от 60 до 79 лет, 10 % в год для тех, кто старше 80 лет

 

Еще раз рассмотрим нашу РОСД на смеси метана и кислорода, используемую для транспортировки полезной нагрузки с поверхности Земли до низкой околоземной орбиты. Для доставки на орбиту каждого килограмма полезной нагрузки требуется около 70 килограммов топлива. Затраты на двухкомпонентное метаново-кислородное топливо составят около 20 центов за один килограмм, так что доставка к орбите каждого килограмма груза на топливо обойдется в 14 долларов. Если затем мы предположим, что расходы на функционирование всей системы будут в семь раз выше расходов на топливо (примерно в два раза больше соотношения «общая стоимость/стоимость топлива» для авиакомпаний), то стоимость доставки на НОО может составлять около 100 долларов за килограмм. Давайте предположим, что есть космический корабль, постоянно курсирующий между Землей и Марсом, который повторно использует воду и кислород с эффективностью в 95 %. Такие межпланетные «челноки», предложенные астронавтом «Аполлон-11» Баззом Олдрином в качестве основного транспорта для маршрута Земля – Марс, позволяют с комфортом перевозить множество людей, поскольку такие аппараты достаточно запустить лишь один раз, при этом полет в оба конца будет занимать 2,2 года и повторяться практически бесконечное количество раз. Купив билет на такой «челнок», каждый пассажир с 100 килограммов личных вещей вынужден будет взять около 400 килограммов продовольствия, чтобы обеспечить себя пищей, водой и кислородом во время 200-дневного полета на Марс. Таким образом, понадобится перевезти 500 килограммов со скоростью ΔV около 4,3 километра в секунду, чтобы переместить иммигранта с НОО Земли на челночный межпланетный космический корабль. Капсула, используемая для транспортировки иммигрантов с НОО к «челноку» и с «челнока» на поверхность Марса, вероятно, должна иметь массу из расчета 500 килограммов на одного пассажира. Таким образом, на орбиту «челнока» нужно доставить для каждого пассажира в общей сложности 1000 килограммов, что при удельном импульсе в 380 секунд для метаново-кислородной двигательной системы на транспортной капсуле переводится в 3200 килограммов на низкой околоземной орбите. При цене доставки на НОО в 100 долларов за килограмм и в предположении, что стоимость самого «челнока» амортизируется за очень большое число миссий, затраты на одного пассажира, летящего на Марс, составят 320 000 долларов.

Очевидно, что в приведенном выше расчете я сделал много предположений и изменение этих условий может значительно повлиять на цену билета. Например, использование прямоточного воздушно-реактивного двигателя (ПВРД) сверхзвукового самолета, для того чтобы получить значительную часть ΔV по пути с Земли на НОО, может сократить затраты на доставку к орбите в тысячу раз. Чтобы поднять транспортную капсулу почти до вывода из поля силы тяжести Земли, можно использовать ракету с электрическим двигателем, после чего капсула будет сброшена, чтобы выполнить управляемый пролет на небольшом расстоянии от Земли с использованием разгонного блока на химическом топливе. Это позволит ей уйти с орбиты и достичь «челнока» с ΔV, развитой химическим двигателем, всего лишь в 1,3 километра в секунду, тем самым полезная нагрузка удваивается, а затраты снижаются. Если «челнок» оснащен магнитным парусом (см. дополнительный раздел в конце главы), а не движется по естественным межпланетным орбитам с помощью гравитационных маневров, гиперболическая скорость капсулы для отправления с Земли, требуемая для стыковки с «челноком», может равняться нулю, что позволит преодолеть весь путь с НОО Земли к челноку с помощью электрического реактивного двигателя, или, предположительно, даже с помощью солнечных или магнитных парусов. Если увеличить эффективность системы жизнеобеспечения на «челноке» с базовых 95 % повторного использования воды и кислорода до 99 %, можно будет везти меньше продовольствия, что опять же снизит затраты. Таким образом, есть основания ожидать, что транспортные расходы по маршруту Земля – Марс снизятся еще на порядок, примерно до 30 000 долларов на пассажира. Изменения стоимости перевозки, которые произойдут благодаря постепенному введению каждой из этих инновационных концепций, показаны в табл. 8.3.

 

Таблица 8.3.  Возможные сокращения стоимости системы транспортировки по маршруту Земля – Марс

 

Тем не менее сумма в 320 000 долларов для первых иммигрантов довольно интересна. Это не те деньги, которые легко просто взять и потратить, но это сравнимо со стоимостью дома из тех, в которых живет верхушка среднего класса в американских пригородах. Такую сумму люди могут потратить, если очень захотят. А почему они захотят? Примерно по следующей причине: из-за малого населения Марса и большой стоимости собственно транспортировки, несомненно, труд на Марсе будет обходиться намного дороже, чем на Земле. Поэтому и заработная плата может оказаться значительно выше. В то время как на Земле инженер заработает 320 000 долларов приблизительно за шесть лет, на Марсе, скорее всего, он получит ту же сумму за два года. Эта разница, аналогичная той, что существовала между доходами в Европе и Америке в течение большей части последних четырех столетий, может сделать эмиграцию на Марс желанной и достижимой целью для отдельного человека. С XVII по XIX век многие европейские семьи откладывали средства на то, чтобы один из членов семьи мог эмигрировать в Америку. Такой эмигрант, в свою очередь, копил деньги на то, чтобы перевезти к себе родных. Сегодня к тому же способу прибегают иммигранты из стран третьего мира, где заработная плата может быть гораздо меньше цены авиабилета. Поскольку, чтобы заработать на Марсе, туда нужно сначала добраться, поездку можно оплатить в кредит. Так поступали в прошлом, почему бы не поступить так и в будущем?

 

Рис. 8.3. Со временем база на Марсе вырастет в настоящее поселение, начало новой ветви человеческой цивилизации. (иллюстрация Роберта Мюррея, «Марсианское общество»)

 

Как упоминалось ранее, нехватка рабочей силы послужит марсианской цивилизации стимулом для технологического и социального развития. Если вы платите зарплату в пять раз больше земной, вы не захотите тратить время ваших подчиненных на ручной труд в теплицах или заполнение форм, и вы не станете строить бюрократических препятствий тому, кто обладает нужными навыками. Короче говоря, марсианская цивилизация будет практичной, поскольку ей придется быть такой, как пришлось американской цивилизации в XIX веке. Этот вынужденный прагматизм даст Марсу огромное преимущество в конкурентной борьбе с менее напряженным и, следовательно, более связанным традициями обществом оставшейся позади Земли. Если необходимость – мать изобретательности, то Марс обеспечит колыбель. Общество фронтира, основанное на технологическом совершенстве и прагматизме и состоящее из людей, которые сами развили в себе инициативность, обязательно породит множество изобретателей. Их изобретения будут удовлетворять потребности не только Марса, но также и земного населения. Поэтому они станут приносить Марсу доход (через предоставление земных лицензий) и в то же время препятствовать стагнации, к которой склонно земное общество с его избытком рабочей силы. Этот процесс оздоровления, как мы обсудим в последующих главах, в конечном счете станет наибольшим преимуществом, которое колонизация Марса предложит Земле. И больше всего выиграют те земные общества, которые имеют самые тесные социальные, культурные, языковые и экономические связи с марсианами.

 


Дата добавления: 2018-09-22; просмотров: 252; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!