Изготовление керамики и стекла



 

Глинистые минералы настолько часто встречаются в марсианских грунтах, что производство керамики не составит проблем. Однако наиболее распространен на Марсе, согласно данным посадочных модулей «Викинг», диоксид кремния – SiO2. Он занимает около 40 % веса в пробах грунта, взятых обоими аппаратами. Этот минерал – основной материал для изготовления стекла, так что его легко будет получать на Марсе, плавя песок – так же, как это делалось на Земле на протяжении тысяч лет. Однако есть и плохая новость для марсианской стекольной промышленности: второе по распространенности соединение на Красной планете (около 17 % в образцах «Викингов») – оксид железа, Fe2O3. И это действительно проблема. Если вы хотите производить стекло для высококлассной оптики, песок, используемый в качестве исходного сырья, не должен содержать железа, а такой довольно трудно найти на Марсе. Так что оксид железа придется как-то удалять. Это можно сделать, соединив его с горячей окисью углерода из «отходов» реактора ОКВГ и тем самым восстановив до металлического железа и диоксида углерода, а затем удалив металл магнитом. Я согласен, процедура довольно утомительна, но в результате у вас останется железо, пригодное для других целей, например для изготовления стали, речь о которой пойдет далее в этой главе. Скорее всего, поскольку базе почти наверняка понадобится гораздо больше стали, чем оптического стекла, вскоре после появления литейного цеха недостатка в очищенном от железа сырье для стекольной промышленности уже не будет. Однако следует отметить, что стекло оптического качества вовсе не нужно для производства многих важных изделий, включая стекловолокно, отличный материал для возведения различных типов строений.

 

Использование воды

 

В уме марсианина постоянно будет один вопрос, преобладающий над всеми вопросами рабочей силы, женского избирательного права и восточным вопросом, вместе взятыми, – вопрос воды. «Как добывать достаточное количество воды, чтобы поддерживать жизнь?» – вот какова будет величайшая общественная проблема.

Персиваль Лоуэлл. Марс, 1895

 

Персиваль Лоуэлл ошибался во многом, но, разумеется, проявил прозорливость в своем замечании относительно воды на Марсе. Все возможности сделать Красную планету доступной для освоения и заселения, которые мы обсуждали до сих пор, зависят от воды: это производство топлива для ракет и роверов, кислорода для синтеза пластмасс, кирпича, строительного раствора и керамики, а также выращивание сельскохозяйственных культур, устранение утечек воздуха и укрепление почвы с использованием искусственной мерзлоты. Хотя мысль о том, чтобы постоянно возить воду на Марс, кажется чрезвычайно непривлекательной, в первых нескольких миссиях мы можем позволить себе получать воду, используя всего 11 % водорода, доставленного с Земли, в сочетании с кислородом, добытым из диоксида углерода марсианской атмосферы. Когда начнется этап создания базы, нам придется двигаться дальше. Возросшие требования к количеству топлива, вытекающие из увеличения уровня человеческой деятельности, множество новых сфер применения машин, а также стоящие выше всего нужды сельского хозяйства – все это сделает спрос на воду намного большим, чем можно удовлетворить, получая ее из «земного» водорода. Если человеческая цивилизация когда-нибудь разрастется на Марсе, нам придется найти способ получать воду на месте.

Если мы проявим должную мудрость, то разобьем базу неподалеку от места, где можно найти воду. Она должна быть легко доступна. Если вы сегодня посмотрите на Марс, вы увидите большую область с пониженным рельефом в районе северного полюса, где очень мало кратеров. Считается, что когда-то давно это огромное углубление было заполнено водой – она-то и защищала поверхность планеты от метеоритов первый миллиард лет или около того. Последнее, что осталось от древнего океана, – северная полярная шапка, которая состоит из водяного льда (по современным оценкам, там содержится около 2 миллионов кубических километров воды [30]). Европейский орбитальный аппарат «Марс Экспресс» также обнаружил заполненные водяным льдом кратеры в северном полушарии [31]. Но это лишь известные источники чистой воды. Картографируя планету с орбиты с использованием гамма– и нейтронного спектрометров, космический аппарат НАСА «Марс Одиссей» обнаружил в обоих полушариях области размером с континент, где грунт на поверхности содержит по весу от 40 до 60 % воды. На полученных с орбиты изображениях мы видим, что север Марса отличается гораздо большим количеством сухих русел рек и ручьев, чем юг. Вполне вероятно, что во времена, когда вода текла по этим каналам в последний раз, в устьях остались запасы льда или вечная мерзлота. Они могут существовать до сих пор, скрытые от нашего взора слоем пыли. Измерения влажности атмосферы, проведенные с орбиты, также не оставляют сомнений, что северное полушарие куда богаче водой, чем южное, а самое влажное время года на Марсе – северная весна. То, что на севере планеты когда-то было относительно много воды, имеет значение для будущих колонистов еще и по другой причине. Гидрологическая деятельность – ключевой фактор для формирования большого разнообразия минеральных руд. Если бы журналист Хорас Грили жил на Марсе, его совет молодым марсианам, ищущим свое счастье, был бы прост: «Идите на север».

Есть целый ряд возможных способов получить воду на Красной планете. Первый, наиболее привлекательный, но самый проблемный метод – просто найти ее. Как обсуждалось в главе 6, на Марсе могут существовать подповерхностные геотермальные водоемы жидкой воды. Если они есть, их вполне реально обнаружить на глубине до километра от поверхности, используя роверы, оснащенные почвопроникающими радарами. Экипажам не придется кататься по планете наудачу. Радарные исследования низкого разрешения, проводящиеся с орбиты, или с самолетов, или с аэростатных зондов, помогут заранее определить лучшие места для поиска воды.  Подсказки могут дать и метановые шахты, которые в случае их обнаружения указывали бы на подповерхностную гидротермальную активность (и, возможно, на наличие на планете жизни!), а еще изображения вроде тех, что были предоставлены зондом «Марс Глобал Сервейор», которые помогут увидеть истечения воды из уступов скал и кратеров, имевшие место в недавнем прошлом. Если мы найдем такой бассейн и пробурим к нему шахту, горячая вода под давлением начнет вырываться из-под земли, как нефтяные фонтаны на месторождениях в Техасе. Когда она соприкоснется с холодной разреженной марсианской атмосферой, то не сможет долго оставаться горячей. В зависимости от скорости истечения вода, вероятно, замерзнет и опадет на поверхность. Таким образом, моментально может образоваться снежный вулкан значительных размеров. Впрочем, добыча воды таким эффектным способом будет расточительной, потому что гидротермальная скважина – это еще и отличный источник энергии. В том же, что касается доступа к воде, не может быть ничего лучше, чем сооружение базы рядом с горячей артезианской скважиной.

Конечно, не факт, что дела пойдут так хорошо. Мы можем и не найти жидкой воды под поверхностью в пределах бурового диапазона. Что тогда? Что ж, в таком случае удачной находкой могут оказаться рассолы. Насыщенные солевые растворы остаются жидкими при низких температурах – до -55 °C, а это значит, что даже без геотермального тепла такие рассолы, защищенные от испарения небольшим слоем почвы или льда, могут существовать на Марсе очень близко к поверхности. В дополнение к тому, что соляные бассейны содержат много воды, они еще представляют большой интерес и как места, где могла бы сохраниться марсианская жизнь. До сих пор рассолы на Марсе обнаружены не были,[28] но и «Спирит», и «Оппортьюнити» нашли обильные залежи солей по краям древних озер, поэтому ученые считают, что светлая кайма вокруг некоторых водоемов на орбитальных снимках Марса, вполне вероятно, представляет собой отложения солей на береговых линиях исчезнувших марсианских морей.

Следующий после рассолов интересный источник воды на Марсе – лед. Большие залежи водяного льда есть в северной полярной шапке планеты, но это не то место, где имеет смысл строить базу. Мы не видим ни одного крупного постоянного отложения льда южнее 70° с.ш., но, если верить теории, за 40° с.ш. подземные льды должны проявлять устойчивость к таянию уже на глубине в метр от поверхности. Впрочем, могут встречаться локальные аномалии. В Колорадо, где я живу, на северной стороне дома может быть зима, а на южной – лето и даже в середине жаркого августа в тенистых впадинах на северных склонах холмов нередко встречается снег. Поэтому я вполне допускаю, что в некоторых холодных расщелинах, лавовых трубках, пещерах или на затененных северных сторонах возвышенностей на Марсе лед можно найти даже в тех областях, в отношении которых климатические модели предсказывают, что его там не может быть. Кстати, практика подтвердила, что дело обстоит именно так. Наблюдения, проведенные «Марс Реконнэйсенс Орбитер» и опубликованные в 2009 году, показали чистый водяной лед на глубине в несколько футов в пяти относительно новых кратерах, расположенных между 43° и 56° с.ш. (Три места находятся в четырехугольной области Кебрения; их координаты таковы: 55,57° с.ш. и 150,62° в.д., 43,28° с.ш. и 176,9° в.д., 45° с.ш. и 164,5° в.д. Два других расположены в четырехугольнике Диакрия: 46,7° с.ш. и 176,8° в.д., 46,33° с.ш. и 176,9° в.д.) Это открытие доказывает, что вода доступна на Марсе в средних широтах.

Тем не менее такие запасы чистого льда в неполярной области можно найти далеко не везде. Марсианским исследователям гораздо чаще придется иметь дело с вечной мерзлотой или заледеневшей грязью. Эти источники могут содержать большое количество воды, но тем, кто будет добывать ее, вероятно, придется воспользоваться динамитом. Вечная мерзлота при марсианских температурах должна быть довольно неподатливым материалом. Кстати, в некоторых ситуациях ее можно рассматривать как превосходный местный строительный материал. Блоки из смерзшегося грунта гораздо крепче, чем обожженные кирпичи из красной глины, для их изготовления не нужна печь, а скреплять их можно без строительного раствора. А еще такой блок – это запас воды, достаточно просто расплавить его.

Все рассмотренные ранее подходы к поиску и добыче воды можно назвать героическими. Теперь давайте взглянем на какие-нибудь более обыденные, промышленные методы.

В марсианском грунте есть некоторое количество воды. Мы это точно знаем, потому что случайные образцы, взятые с поверхности на глубине до 10 сантиметров на обеих посадочных площадках «Викинга», содержали по весу около 1 % воды. Это не так уж плохо, но на самом деле тест был не совсем достоверным, потому что грунт на поверхности Марса самый сухой. Образцы нагревали в течение всего 30 секунд до температуры 500 °C и, более того, перед экспериментом их хранили в открытом сосуде при 15 °C в течение нескольких дней. Так как эта температура намного выше, чем средняя марсианская, очень высоки шансы, что значительное количество воды из образцов испарилось. На основании результатов «Викингов» можно с уверенностью предположить, что среднестатистический  марсианский грунт содержит не менее 4 % воды. Впоследствии это предположение подтвердил орбитальный зонд «Марс Одиссей». А некоторые грунты, вероятно, будут еще более влажными. Так, на Марсе есть соли, обычно содержащие до 10 % химически связанной воды, которая может выделяться при нагревании. Распространенные на Красной планете глины тоже отлично адсорбируют воду. Например, в SNC-метеоритах была найдена смектитовая глина, также известная как «разбухающая», потому что она способна поглотить несколько процентов воды по отношению к своему весу. Во многих SNC-метеоритах также был найден минеральный гипс (CaSO4 × 2Н2O). Вполне вероятно, что он довольно распространен на Марсе, потому что серы и кальция на обеих посадочных площадках «Викингов» обнаружилось гораздо больше (в сорок и в три раза соответственно), чем в среднем в почвах на Земле. Гипс может включать более 20 % воды по весу.

 

Рис. 7.3. Система для извлечения воды из марсианского грунта: грузовик, печь и отвал шлака (рисунок Майкла Кэрролла)

 

Будь то 4 или 20 %, чтобы получить воду из почвы, понадобится только тепло. Осуществить нагрев можно одним из двух способов: принести либо почву к нагревателю, либо нагреватель к почве. Первый вариант показан на рис. 7.3. Грузовик, нагруженный некоторым количеством относительно влажного грунта, сваливает его на конвейерную ленту, ведущую к разогретой до 500 °C (или около того) печи, в результате чего выделяется адсорбированная вода. Пар, полученный таким образом, собирают в конденсаторе, а обезвоженный материал выбрасывают. Полученные кучи шлака, конечно, будут создавать некоторое неудобство, но в целом энергетика этой системы не так уж плоха. Если в качестве исходного сырья использовать грунт с 4 %-ной влажностью, потребуется около 3 кВт. ч тепла на каждый килограмм воды [32]. При таком расходе реактор на 100 кВт сможет производить 900 килограммов воды в сутки, если его электроэнергия питает печь, или до 18 тонн воды в день, если потерянное тепло реактора будет использовать для обжига. (Термоэлектрические генераторы – современные космические ядерные источники питания – используют для преобразования в электричество только 5 % энергии, остальные 95 % выходят как «отработанное тепло».)

Увы, остается еще отвал обезвоженного грунта, с которым надо что-то делать. Мы могли бы произвести 18 тонн воды в день, но одновременно с тем обзавелись бы 462 тоннами шлака. Это не так много, около 12 кубометров, или шесть грузовиков. Вполне вероятно, что мы найдем сухой породе какое-то применение, а если нет, то просто сбросим его в соседний кратер.

Впрочем, если вы не хотите возить грунт туда-сюда, альтернативой будет доставка нагревателя к нужной области Марса. Один из предложенных способов заключается в том, чтобы иметь мобильную печь, способную, находясь в движении, загружать в себя грунт, прогревать его, конденсировать пар и выбрасывать сухую породу [33]. Вы, наверное, не захотели бы использовать для такой системы ядерный реактор, а вместо этого предпочли бы радиоизотопный термоэлектрический генератор (РТГ) вроде того, что использовался на «Вояджерах», «Викингах», «Галилее» и других космических аппаратах, отправившихся исследовать окраины Солнечной системы. Стандартный РТГ выдает 300 Вт электроэнергии, которых достаточно, чтобы привести в движение грузовик, а также 6 кВт отходящего тепла, что позволяет получать 56 килограммов воды в день из 4 %-ного исходного сырья. Такое устройство было бы весьма удобно для небольших экипажей, работающих на выезде, или как дополнительная часть оборудования для первых разведывательных миссий (56 килограммов ежедневно в течение одной 500-дневной миссии «Марс Директ» – это в конечном итоге запасы воды до 28 тонн), но его выход весьма мал по сравнению с потребностями большой развивающейся марсианской базы. Конечно, мы могли бы производить необходимую воду, используя множество таких устройств, но все эти РТГ дорого нам обойдутся, к тому же мы по-прежнему будем перелопачивать много грунта, и еще надо учитывать износ оборудования. Есть ли более изящное решение?

Один из таких способов – использование микроволнового устройства для нагревания грунта. Вода в таком случае будет испаряться и подниматься в виде пара. Целиком конструкция может представлять собой что-то вроде поставленного на шасси тента с подвижной полой внизу, как щеткой захватывающей грунт вокруг; последняя должна быть достаточно плотной и герметичной, чтобы удерживать водяной пар, пока он не осядет на стенках тента. Преимущество этой схемы заключается в том, что здесь не нужно копать грунт, и более того, микроволновые печи расходуют большую часть своей энергии на нагрев одной лишь воды, а не грунта. К сожалению, поднимающийся пар будет передавать тепло почве, так что оно окажется израсходовано впустую (впрочем, не в такой степени, как в системе одного только теплового нагрева). Однако проблема состоит в том, что питать микроволновую печь следует от источника электрической, а не, например, тепловой энергии. 6000 Вт отработанного тепла, произведенного РТГ, не получится использовать для приведения системы в действие, придется довольствоваться 300 Вт электрической мощности аппарата. Таким образом, даже если 1 Вт мощности микроволнового устройства окажется вдвое эффективнее тепловой энергии при добывании воды из грунта, вы все равно получите только одну десятую часть запланированного количества воды, потому что тепловая энергия в двадцать раз доступнее. Впрочем, если концентрация воды высока, а грунт слишком тверд, чтобы его раздробить и загрузить в печь (как в случае с вечной мерзлотой), микроволновая система будет работать лучше, чем мобильный экскаватор, хотя выход по-прежнему останется довольно низким. Предположим, мы используем такую систему для обработки запаса вечной мерзлоты, содержащей по весу 30 % воды. На извлечение каждого ее килограмма понадобится около 1 кВт. ч электрической мощности. Так, в течение марсианского сола (24,6 земного часа) передвижной микроволновый аппарат с 300-ваттным РТГ сможет добыть около 7,4 килограмма воды. Единственный способ улучшить производительность – применить намного больше энергии, например подключив устройство с помощью длинного кабеля к ядерному реактору базы и добавив 100 кВт. В этом случае удастся произвести 2,2 тонны воды в день, но аппарат потеряет мобильность.

 

Рис. 7.4. Мобильные методы извлечения воды из марсианского грунта: колесный комбайн, поглощающий почву (слева вверху); мобильная микроволновая система с полой (по центру); переносной купол с конденсатором (внизу) (иллюстрация Майкла Кэрролла)

 

Я думаю, что лучшее решение – растянуть прозрачный тент над выбранной областью, после чего пространство внутри естественным образом прогреется, как в парнике. Эффект можно усилить, если установить вокруг большие, легкие отражатели и перемещать их по мере движения Солнца, чтобы с максимальной пользой улавливать его лучи. Грунт внутри палатки будет нагреваться, конечно, не до 500 °C, но все равно существенно. Благодаря этому часть адсорбированной в нем воды испарится, и, чтобы собрать ее, достаточно будет установить в одном из углов тента постоянно охлаждаемую пластину (вода станет оседать на ней в виде инея – так же, как это происходит у вас в морозильнике). Чтобы понять, насколько эффективна такая система, учтем, что в среднем на Марсе с помощью солнечного света можно получить 500 Вт энергии с квадратного метра поверхности. Если тент представляет собой полусферу 25 метров в диаметре, а парниковый эффект и отражатель позволяют получить дополнительные 200 Вт с квадратного метра тепла, общая эффективная мощность системы будет 98 кВт. Этого достаточно, чтобы за восьмичасовой рабочий день добыть 300 килограммов воды из грунта с 4 %-ной влажностью. Тент, сделанный из полиэтиленовой пленки толщиной 0,1 миллиметра, будет иметь массу всего 100 килограммов (и, следовательно, весить на Марсе 38 килограммов), так что экипаж ровера вполне сможет переносить его на новое место каждый день. Со временем грунт, из которого извлекли воду, естественным образом увлажнится, и эту область поверхности можно будет снова использовать.

Добывать воду из марсианской атмосферы следует совершенно иным способом. Проблема здесь заключается в том, что «воздух» на Красной планете очень сухой – в среднем необходимо обработать один миллион кубометров, чтобы добыть килограмм воды . Инженер Том Мейер и исследователь Марса Крис Маккей в своей уже ставшей классической статье предложили систему механического компрессора, способную делать именно это [33]. Авторы выяснили, что для производства каждого килограмма воды потребуется около 103 кВт. ч электроэнергии. Если сравнивать их результат с показателем эффективности описанной выше системы для добычи воды из почвы (около 3 кВт. ч тепловой энергии на килограмм), «воздушный» метод, конечно, покажется малоэффективным, хотя следует отметить, что компрессор также будет добывать из атмосферы много аргона и азота, необходимых для жизнеобеспечения базы.

Впрочем, совсем недавно Адам Брукнер, Стивен Кунс и Джон Уильямс из Университета штата Вашингтон провели исследование, в котором, вместо того чтобы сжимать воздух, просто прогнали его через поглощающий слой цеолита с помощью вентилятора [34]. Цеолит очень хорошо поглощает влагу, его можно использовать для уменьшения концентрации паров воды в атмосфере до нескольких частей на миллиард, а такая влажность намного ниже, чем даже марсианская. При температурах, царящих на Красной планете, цеолит способен адсорбировать воду в количестве до 20 % от своего веса. После насыщения его можно поместить в печь, чтобы выпарить воду – на это уйдет около 2 кВт тепловой энергии на килограмм, – а затем использовать повторно. Поскольку при таком подходе достаточно гнать поток воздуха, не сжимая его, мощность механического вентилятора будет значительно меньше мощности насоса, который используется в системе Мейера и Маккея, но, вероятно, потребуется еще 2 кВт. ч электрической энергии на килограмм обработанной воды. То есть энергетические затраты здесь будут сравнимы с таковыми при добыче воды из почвы.

Основная проблема с извлечением воды из атмосферы Марса любым способом заключается в том, что система для этого должна быть довольно большой. Так, система, объединяющая воздуховод с площадью поперечного сечения 10 квадратных метров и вентилятор, способный гнать воздух со скоростью 100 метров в секунду, будет производить около 90 килограммов воды в день. Нет необходимости делать это устройство подвижным, а потому 8 кВт электрической энергии для запуска вентилятора легко можно передать с базы. Если иметь в виду, что в данном случае не нужно проводить геологоразведочные работы и перемещать грунт, что система полностью автоматизируема и что исходный материал – марсианский «воздух» – это бесконечно возобновляемый ресурс, то в итоге такая система добычи воды из атмосферы кажется весьма привлекательной.

Резюмируя, можно сказать, что, хоть на Марсе и нет водоносных каналов, оплетающих планету, вода, конечно же, здесь имеется – причем в количествах, достаточных для существования людей. Нет сомнений, что большая ее часть, добытая на засушливых просторах, пойдет на то, чтобы добавить Красной планете зелени.

 

Озеленение Красной планеты

 

Если учесть затраты на межпланетную транспортировку, станет очевидно, что, если большое человеческое общество будет когда-нибудь жить на других планетах, еду ему придется выращивать самостоятельно. В этом отношении Марс обладает огромным преимуществом по сравнению с нашей Луной и любым другим известным небесным телом (кроме Земли). Все четыре основных элемента органических соединений – водород, углерод, азот и кислород – легко доступны на Марсе. Есть мнение, что соединения углерода, вероятно, есть на астероидах; лунным зондам недавно удалось получить некоторые доказательства того, что в постоянно затененных южных областях естественного спутника Земли могут быть отложения льда. Но эти аргументы не относятся к делу, потому что самая большая проблема с Луной и со всеми другими безвоздушными космическими телами и искусственными свободно парящими в космосе колониями (вроде тех, что были предложены Джерардом О'Нилом [35]), состоит в том, что солнечный свет там недоступен в пригодной для выращивания сельскохозяйственных культур форме. Это чрезвычайно важно, но недостаточно хорошо осознано. Растениям требуются огромное количество энергии, которая может поступать только с солнечным светом. Например, один квадратный километр пахотных земель на Земле в полдень получает посредством солнечного света 1000 МВт – это сравнимо с потреблением американского города-миллионника. Иными словами, для того чтобы вырастить под искусственным светом столько сельскохозяйственной продукции, сколько производит в год крошечный Сальвадор, энергии не хватит у всех электростанции Земли, взятых в совокупности. Растения могут пережить уменьшение светового потока приблизительно в пять раз по сравнению с земными нормами, но получить урожай в сколько-нибудь значимом объеме уже не выйдет.

Проблема с использованием на Луне или в космосе естественного солнечного света заключается в том, что там он не экранируется никакой атмосферой (на Луне есть и еще одна трудноразрешимая проблема: двадцативосьмидневный суточный цикл, совершенно не приемлемый для земных растений). Солнечные вспышки губительны для жизни. Для того чтобы успешно выращивать сельскохозяйственные культуры в таких условиях, стены парника придется изготовить из стекла толщиной 10 сантиметров – что сделает использование значительных сельскохозяйственных площадей неприемлемо дорогим. Отражатели и другие направляющие свет устройства не решат эту проблему, если только не покрыть ими площадь, сравнимую с площадью засеянных участков.

Атмосфера Марса, напротив, достаточно плотная, чтобы защитить от солнечных вспышек культуры, выращиваемые на поверхности. На Марсе, как мы видели, легко можно развернуть большие надувные теплицы, защитить их геодезическими куполами и тем самым быстро подготовить огромные площади для сельскохозяйственных нужд. Тамошний уровень освещенности, составляющий 43 % от такового на Земле, достаточен для фотосинтеза, который, кстати, можно ускорить, если заполнить купола газовой смесью с большей концентрацией двуокиси углерода, нежели на Земле.

Мы уже знаем, что для того, чтобы поддерживать в жилом помещении диаметром 50 метров давление до 5 фунтов на квадратный дюйм, понадобится упрочненная кевларовая ткань для купола толщиной в 1 миллиметр. Однако растениям требуется лишь 0,7 фунта на квадратный дюйм, или 50 мбар, атмосферного давления смеси из 20 мбар азота, 20 мбар кислорода, 6 мбар паров воды и менее 1 мбар диоксида углерода. Если 50-миллиметровый купол будет использоваться только в качестве теплицы, нам хватит ткани толщиной всего 0,2 миллиметра. Такой купол, занимающий около 2000 квадратных метров (половину акра) пахотных земель, потребует ткани массой порядка одной тонны, но щит из оргстекла для такого купола по-прежнему будет иметь массу 4 тонны.

Массу плексигласового щита, закрывающего геодезический купол, можно уменьшить почти вдвое, если верхнюю полусферу сделать в форме линзы вместо традиционной. Такой купол легче возводить, поскольку его высота меньше. Также значительно сократится время, за которое сельскохозяйственные культуры наполнят кислородом атмосферу купола.

Однако, если растения могут переносить давление 0,7 фунта на квадратный дюйм, люди на это не способны, так что внутри таких куполов придется носить скафандры. Повышение давления под куполом до 2,5 фунта на квадратный дюйм исключит потребность в скафандрах. Однако до тех пор, пока на базе будет мало обрабатываемой земли, вероятно, лучше делать парниковые купола пригодными для обслуживания при том же давлении в 5 фунтов на квадратный дюйм, что и в жилых куполах. Тогда можно будет построить туннели, позволяющие людям без скафандров свободно, без необходимости герметизации и разгерметизации, передвигаться между двумя типами куполов. Более того, благодаря общим элементам в конструкции их массовое производство окажется проще, а еще люди смогут переселиться в бывшие теплицы, когда планета станет перенаселенной. Основное различие между этими двумя типами куполов будет состоять в допустимом парциальном давлении двуокиси углерода. В жилых куполах это значение следует ограничить типичным земным – около 0,4 мбар. А в теплицах нужно использовать намного более высокий уровень углекислого газа, около 7 миллибар (атмосферное марсианское давление), поскольку это должно значительно повысить урожайность (растения на Земле страдают от недостатка двуокиси углерода). Как мы уже видели, существует множество способов подачи в теплицу воды. Таким образом, основные предпосылки для сельского хозяйства – хорошо освещенная и увлажненная почва – создать на Марсе вполне реально.

 

Таблица 7.1.  Сравнение питательных веществ для растений в почвах на Земле и Марсе

 

Насколько плодороден марсианский грунт? Трудно сказать, но на основании того, что нам известно сегодня, он, вполне вероятно, может оказаться отличной средой для выращивания культур  – значительно лучшей, чем почвы в большинстве стран на Земле.

В табл. 7.1 сравнивается концентрация необходимых для растений питательных веществ в земных и марсианских грунтах (последние данные основаны на результатах «Викинга» и анализе SNC-метеоритов [36]).

Из табл. 7.1 видно, что в плане содержания большинства питательных веществ, необходимых для растений, марсианский грунт богаче, чем земной. Проблема там только с азотом, содержание которого не удалось измерить из-за ограничений конструкции рентгеновского флуоресцентного прибора «Викинга», использовавшегося для анализа состава почвы. Однако известно, что азот есть в атмосфере Марса, поэтому, если грунт вдруг окажется бедным нитратами, можно синтезировать аммиак и нитратные удобрения. В самом деле, те же реакторы Сабатье, использующиеся для производства метанового топлива, вполне реально приспособить и для производства аммиака, если в качестве исходного сырья взять азот и водород. Большинство удобрений на Земле производится именно в таких реакторах. Однако, согласно нашему сегодняшнему представлению о формировании планет, изначально на Марсе должно было быть то же содержание азота, что и на Земле, и его большая часть по-прежнему остается на планете, несомненно, в связанном виде в грунте, то есть в виде нитратов. Природные слои этих соединений наверняка будут обнаружены на Красной планете и обеспечат базу грузовиками удобрений.

Еще одно питательное вещество, которое необходимо для растений и которым, как сейчас кажется, бедны типичные марсианские грунты, – это калий. Вероятно, его в высоких концентрациях можно будет найти в соляных слоях, отложившихся на ныне сухих берегах древних водоемов Марса.

По физическим свойствам марсианский грунт может вполне подходить для выращивания сельскохозяйственных культур, так как кажется рыхлым и пористым. Как уже говорилось ранее, марсианские почвы содержат смектитовые глины. Это хорошая новость для будущих марсианских фермеров, потому что смектиты весьма эффективны при буферизации и стабилизации рН почвы в слегка кислую сторону, а также обеспечивают большой запас заменяемых питательных ионов благодаря своей высокой обменной способности.

Я уже рассказывал, что марсианские теплицы будут находиться под давлением в 5 фунтов на квадратный дюйм (340 мбар), что в три раза меньше, чем давление на уровне моря на Земле. Поскольку сила тяжести на Марсе составляет одну треть от земной, поддержание такой плотности атмосферы также сделает возможным полет насекомых – пчел, которые станут опылять растения. Первоначально купола будут просто находиться под давлением марсианской атмосферы (95 % диоксида углерода) с несколькими миллибарами искусственно сгенерированного кислорода, добавленного для того, чтобы обеспечить дыхание растений. Поэтому марсианские будут расти в парниковой среде, богатой двуокисью углерода, и эффективность фотосинтеза у них соответственно увеличится.

На Земле, в бедной углекислым газом среде, растения преобразуют солнечный свет в химически связанную энергию с эффективностью по меньшей около 1 %. (Общая экологическая эффективность леса или дикой степи значительно ниже, возможно, 0,1 %, но это потому, что мертвые растения разлагаются. Сами по себе растения значительно эффективнее, так что для сельскохозяйственного применения мы можем воспользоваться этим преимуществом и убирать зеленую массу до того, как она будет разложена бактериями.) Хорошая оценка эффективности фотосинтеза в среде, обогащенной углекислым газом, может составлять около 3 %. Если предположить, что купол диаметром 50 метров представляет собой правильную полусферу, получается, что растениям с такой эффективностью фотосинтеза, устилающим пол теплицы, понадобится примерно 310 дней, чтобы превратить практически весь имеющийся под куполом углекислый газ в кислород. А вот если использовать купол с линзообразной верхушкой (радиус кривизны 50 метров вместо обычных 25), время его заполнения кислородом уменьшится всего до восьми дней.

Окислитель, который, возможно, был обнаружен «Викингом» в марсианском грунте, не окажется проблемой, так как он разлагается на восстановленный материал и свободный кислород при контакте с водой. Под куполами ожидается влажная среда, и при циркуляции вода будет заставлять парниковые почвы быстро выделять запасенный ими кислород.

Мы все слышали доводы вегетарианцев в пользу отказа от употребления мяса: дескать, акр, засеянный кукурузой, может дать гораздо больше пищи для человека, чем акр, где растет трава для рогатого скота. Эти аргументы сомнительны на Земле, потому что голод на нашей планете вызван не глобальной нехваткой продовольствия, а отсутствием у голодающих денежных средств. А вот на Марсе, где, прежде чем использовать пахотную землю, ее придется создать, применяя купола и прочие приспособления, тезис вегетарианцев будет достоин внимания. Марсианскому сельскому хозяйству придется показать очень высокую эффективность. Включение в пищевую цепочку большого количества коров и быков, овец, коз, кроликов, кур и других теплокровных травоядных на самом деле очень неэффективно. Большая часть энергии растений, которую потребляют животные, идет на поддержание температуры их тела, и лишь очень малая когда-либо дойдет до вас.

Несколько лет назад некий автор написал ряд книг, в которых популяризировал идею о том, что козы способны стать ключом к животноводству в космосе. Они имеют удобные размеры, всеядны, быстро размножаются, дают молоко и т. д. Как бы то ни было, я родился в городе, но зрелые годы провел в сельской местности. Я видел, на что способны козы. Не оставляйте их рядом с вашим кевларовым куполом. Они его съедят.

С другой стороны, практически какое сельскохозяйственное растение ни возьми, люди не употребляют в пищу как минимум половину его массы. Например, в случае кукурузы, риса или пшеницы мы не едим их корни, стебли или листья. Вместо этого мы закапываем их обратно в почву, утешая себя мыслями, что тем самым поддерживаем ее плодородность. Но если бы это была наша истинная цель, мы бы лучше зарыли целое растение, иначе получается, что мы просто тратим энергию. Таким образом, если мы хотим быть эффективными, нам нужно найти способ использовать части растений, которые нельзя сразу съесть. Может, пришло время подключить к делу коз? Разве что нескольких, чтобы развлечь детей и занять службу безопасности базы, при марсианской гравитации козы будут с легкостью перепрыгивать через трехметровые заборы. Впрочем, есть идеи получше.

Одна из них – использование грибов. Так, в Университете Пердью (штат Индиана) финансируемый НАСА исследовательский центр космического сельского хозяйства выделил виды грибов, способные жить на частях растений, которые обычно идут в отходы, и превратил 70 % от их вещества в пищевой белок вроде соевого (а это уже значительно лучше, чем козы). Быстрорастущие грибы не нуждаются в свете, им достаточно темного, теплого помещения, отходов – например, стеблей кукурузы – и небольшого количества кислорода. Другими словами, вы можете содержать грибную плантацию в шкафу. Это, кстати, пример технологии, разработанной для экстремальных условий космоса и способной иметь множество применений для удовлетворения основных человеческих потребностей на Земле. Но если меню сплошь из грибов и фасоли кажется вам недостаточно разнообразным, у вас все еще есть надежда. Некоторые холоднокровные животные – такие как рыба тилапия – достаточно эффективно перерабатывают растительные отходы в высококачественный белок. Рыбные фермы на Марсе? А почему нет? Для выращивания тилапии вам не понадобится очень большой резервуар, а кроме того, рыбы не сбегут, чтобы съесть ваш купол.

Еще вам понадобятся плодоносящие фруктовые деревья. К тому же они обеспечат вас древесиной для изготовления мебели и т. п. Еще ее вместе с другими отходами растениеводства можно будет использоваться в пластмассовой промышленности, что позволит значительно увеличить разнообразие доступных материалов.

 

Марсианская металлургия

 

Возможность изготавливать металлы имеет фундаментальное значение для любой технологический цивилизации. Марс предоставляет все необходимые ресурсы. На самом деле в этом отношении он значительно богаче, чем Земля.

 

Сталь

 

Вне всяких сомнений самый доступный промышленный металл на Марсе – железо. А наиболее широко использующаяся на Земле железная руда – гематит (Fe203). Она настолько распространена на Марсе, что задает цвет Красной планеты. Восстановление гематита до чистого железа – процесс простой и, согласно Ветхому Завету и Гомеру, практикуется на Земле около трех тысяч лет. Есть как минимум два подхода, пригодных для использования на Марсе. Первый, как уже обсуждалось ранее в этой главе, основан на применении отработанного монооксида углерода – реакция (1), описанная выше, – из реактора ОКВГ.

 

Fe2O3 + 3 СО → 2Fe + 3CO2 (4)

 

В другом процессе используется водород, получаемый электролизом воды.

 

Fe2О3 + 3Н2 → 2Fe + 3Н2О (5)

 

Реакция (4) немного экзотермическая, а реакция (5) – слабо эндотермическая, так что после нагревания реакторов до начальных условий ни одному из них не потребуется много энергии для запуска. В случае реакции (5) необходимый водород можно получить путем электролиза воды, которая будет отходом других реакций, так что единственным новым сырьем для системы является гематит. Углерод, марганец, фосфор и кремний, четыре основных легирующих элемента для стали, очень распространены на Марсе. Дополнительные легирующие элементы, например хром, никель и ванадий, также имеются в солидных количествах. Таким образом, сразу после выработки железа его тут же можно будет сплавить с соответствующими количествами перечисленных элементов для получения практически любого желаемого типа углеродистой или нержавеющей стали.

 

Рис. 7.5. Создание базы на Марсе (рисунок Роберта Мюррея, «Марсианское общество»)

 

Широкая доступность на марсианской базе угарного газа – он будет отходом реакторов ОКВГ – открывает некоторые интересные перспективы для новых методов низкотемпературного литья. Например, окись углерода может быть объединена с железом при температуре 110 °C для получения карбонила железа (Fe(CO)5), который при комнатной температуре представляет собой жидкость. Карбонил железа можно вылить в форму а затем нагреть примерно до 200 °C, после чего он начнет разлагаться. Останется чистое и очень прочное железо, в то время как окись углерода выйдет в виде газа, что позволит использовать ее повторно. Также можно складывать железо слоями путем разложения паров карбонила, что позволит производить желаемые полые объекты любой сложной формы. Аналогичные карбонилы могут быть образованы окисью углерода и никелем, хромом, осмием, иридием, рутением, рением, кобальтом и вольфрамом. Эти соединения разлагаются при несколько различных условиях, что позволяет разделить смесь карбонилов металлов на чистые компоненты путем последовательного разложения [37].

 

Алюминий

 

Второй металл после стали по важности для общего пользования – это алюминий. Он довольно распространен на Марсе – примерно 4 % материала поверхности планеты по массе. К сожалению, там, как и на Земле, он большей частью представлен в виде очень сильно связанного оксида – оксида алюминия, или глинозема (Al2О3). Для того чтобы получить металл на Земле, глинозем растворяют в расплавленном криолите при 1000 °C, а затем подвергают электролизу с угольными электродами, которые расходуются в процессе, в то время как криолит остается неповрежденным. На Марсе угольные электроды могут быть получены путем пиролиза метана в реакторе Сабатье, который уже описывался в главе 6.

 

Al2О3 + 3С → 2Al + 3СО (6)

 

Помимо сложности реакции (6), главная проблема с ее использованием для производства алюминия заключается в том, что она очень эндотермическая. Для получения одного килограмма алюминия нужно затратить около 20 кВт. ч электрической энергии. Вот почему земные заводы по производству алюминия находятся в районах, где энергия очень дешева, например в северо-западной части тихоокеанского побережья США. На Марсе в период строительства базы энергия будет дорогой. При потребности в 20 кВт. ч на килограмм ядерный реактор мощностью в 100 кВт позволит производить всего около 123 килограмма алюминия в день. Поэтому основным материалом, используемым для создания высокопрочных конструкций на Красной планете, станет вовсе не он – а сталь. Из-за меньшей силы тяжести на Марсе она будет весить примерно столько же, сколько алюминий на Земле. Сам же алюминий придется использовать лишь там, где он необходим по причине своей высокой электропроводности и/или легкости, например при изготовлении электропроводки или компонентов приборов для летательных аппаратов.

 

Кремний

 

В современную эпоху кремний стал, возможно, третьим по важности металлом после стали и алюминия – ведь это ключевой материал для производства всей электроники. Он будет еще более значимым на Марсе, потому что, добывая кремний, мы сможем производить фотоэлектрические панели, тем самым постоянно увеличивая добычу электричества на базе. Сырье для этого – диоксид кремния (SiO2) – по массе составляет почти 45 % от марсианской коры. Чтобы получить кремний, нужно смешать его диоксид с углеродом и нагреть в электропечи.

 

SiO2 + 2С → Si + 2СО (7)

 

Опять же, мы видим, что восстанавливающий элемент, углерод, – это побочный продукт системы производства топлива на марсианской базе. Реакция (7) высоко эндотермическая, хотя далеко не такая затратная, как реакция восстановления оксида алюминия (6), а расходы энергии на нее даже отдаленно не сопоставимы с таковыми в случае (6).

Кремний как продукт реакции (7) достаточно хорош для некоторых целей. Например, его можно использовать, чтобы сделать карбид кремния, весьма термостойкий материал (он использовался в обшивке, защищавшей шаттлы от перегрева при входе в атмосферу). Однако очевидно, что даже малейшее количество гематита, присутствующего в исходном сырье для реактора, также будет восстановлено, в результате чего в кремнии окажутся железные примеси. Для получения чистейшего кремния, достаточно хорошего для микросхем и солнечных панелей, необходим еще один шаг: купание полученного загрязненного кремниевого продукта в горячем газообразном водороде. В результате кремний превратится в силан (SiH4). При температуре не ниже комнатной он представляет собой газ, так что его легко можно отделить от гидридов других металлов, все из которых являются твердыми. Затем нужно перегнать силан в другой реактор и разложить при высоких температурах – получится чистый кремний и свободный водород, который снова пойдет на очистку. Такой кремний уже можно легировать фосфором или другими примесями, чтобы произвести именно тот полупроводниковый прибор, который требуется.

Можно не разлагать силан, а сжижать его для длительного хранения, охлаждая до -112 °C. Это всего на 20 °C ниже типичных марсианских ночных температур. Для чего нужно хранить жидкий силан? Дело в том, что он горит в диоксиде углерода. Практически все топливные смеси, которые мы обсуждали до сих пор, например метаново-кислородная, предполагают перевозку в топливных баках и топлива, и его окислителя. На Земле так поступать не принято. На Земле вне зависимости от того, сжигаете вы бензин в автомобиле или дерево в камине, вам всего лишь нужно подать топливо, а окислителем послужит кислород из воздуха. Поскольку обычно окислитель составляет около 75 % от реагирующей смеси, последний упоминавшийся подход явно будет гораздо более эффективным. В атмосфере Марса очень мало свободного кислорода, она почти полностью состоит из углекислого газа. Не многие вещества могут гореть в углекислом газе, но силан точно на такое способен:

 

SiH4 + 2CO2 → SiO2 + 2С + 2 Н2O (8)

 

В реакции (8) 73 % массы топлива – диоксид углерода, и только 27 % – силан. Некоторые из продуктов реакции (8) являются твердыми, потому эту систему нельзя использовать в двигателе внутреннего сгорания. Но она вполне сгодится, чтобы разжечь котел паровой машины. Для прямоточного воздушно-реактивного двигателя (ПВРД) или для ракетных двигателей она также будет вполне хороша. Ракетный двигатель, работающий на силане и диоксиде углерода согласно реакции (8), может производить удельный импульс около 280 секунд. На первый взгляд это не очень впечатляет, пока вы не осознаете, что при себе вам достаточно иметь только 27 % массы топлива. Представьте себе небольшое прыгающее транспортное средство, которое неоднократно взлетает и совершает посадку, доставляя телеробота к какому-то количеству выбранных мест, разделенных непроходимой территорией. Такому устройству не нужно будет нести на борту все необходимое топливо. Вместо этого оно сможет производить дозаправку диоксидом углерода, просто запуская насос после посадки. В результате эффективный удельный импульс этой системы составит не 280 секунд, а 280 секунд, умноженные на отношение общего количество топлива к количеству силана, то есть на 3,75. В итоге получится значение 1050 секунд, неслыханное для химических реактивных двигателей.

Гидрид бора, или диборан (В2Н6), также способен гореть в двуокиси углерода с удельным импульсом 300 секунд в пропорции 1:3 соответственно [37]. Ракетный прыгун на диборане и диоксиде углерода будет иметь, таким образом, эффективный удельный импульс 1200 секунд, это еще лучше, чем у системы на силане и диоксиде углерода, которая обсуждалась выше. Однако бор на Марсе редок, в то время как кремний встречается везде, а процессы, требующиеся для производства диборана, довольно сложны. Небольшие количества диборана можно импортировать на Марс в начале программы, чтобы обеспечить высокую производительность применений прыгуна (использование системы на этом топливе будет лучшим вариантом, например, для выполнения роботизированной миссии по возвращению проб марсианского грунта), но к моменту существования базы, где будет возможность производить силан, местный продукт почти наверняка вытеснит привозной диборан.

Неоднократно предлагалось производить кремний на Луне, чтобы изготавливать прямо там большое количество солнечных батарей. Эта идея имеет серьезные недостатки. Да, совершенно верно, диоксид кремния очень распространен на Луне, лучшего пожелать нельзя, но углерод и водород, необходимые для его превращения в чистый металл, отсутствуют. Хотя в описанных выше процессах эти реагенты используются повторно, в действительности всегда есть потери. Если вы хотите производить металлический кремний или любой другой металл на Луне, в конечном итоге вам придется завозить много углерода и водорода. На Марсе, напротив, оба этих элемента доступны в естественных условиях.

 

Медь

 

В качестве последнего примера получения ключевого промышленного металла на марсианской базе рассмотрим медь. На Луне ее нет, а вот в SNC-метеоритах ее удалось обнаружить примерно в тех же концентрациях, что и в почве на Земле. Однако они довольно низки, всего около 50 частей на миллион. Если вы хотите получить сколько-нибудь значительные количества меди, вам не удастся извлечь ее из почвы. Вместо этого вам придется искать участки, где природа сосредоточила металл в виде руды. В коммерческом плане наиболее важными источниками медной руды на Земле служат сульфиды меди. Как мы уже видели, сера гораздо более широко распространена на Марсе, нежели на Земле, и вероятно, что месторождения медных руд имеются на Красной планете в виде залежей сульфидов меди, сформировавшиеся на основе лавовых потоков. После обнаружения руды медь легко можно будет восстановить выплавкой или выщелачиванием, как это практикуется на Земле с древних времен.

Приведенный пример доказывает тот факт, что, в общем, единственный способ доступа к геохимически редким элементам – добыча местных концентраций богатых минеральных руд. Однако найти руды удастся только там, где проходили сложные гидрологические и вулканические процессы, которые сосредоточили элементы в рудных месторождениях, а в пределах Солнечной системы такие процессы имели место только на Земле и Марсе. Таким образом, у нас должна быть возможность найти на Красной планете концентрированные руды почти любого металла, редкого или распространенного, который понадобится нам для построения современной цивилизации.

 

 

Вопрос энергии

 

Должно быть очевидно, что доступность больших количеств тепловой и электрической энергии – необходимое условие для строительства основательной марсианской базы. Может быть, так не принято говорить, но, безусловно, лучший способ обеспечить эту энергию в первые годы – импорт готовых ядерных реакторов. На Земле сегодня основными источниками энергии для нашей цивилизации являются ГЭС, АЭС, а также ископаемое топливо и древесина для сжигания. Геотермальное тепло когда-нибудь станет четвертым источником, а вот солнечная энергия и энергия ветра стоят далеко позади него по значимости и играют очень незначительные роли. На Марсе гидроэлектростанции и сжигание ископаемого топлива использовать невозможно. В долгосрочной перспективе окажется доступна энергия термоядерного синтеза, поскольку отношение дейтерия (тяжелого изотопа водорода, который необходим как топливо для термоядерных реакторов) к обычному водороду, найденному на Марсе, в пять раз выше, чем на Земле. К сожалению, термоядерных реакторов в настоящее время не существует. Это значит, что ядерная энергетика остается единственным вариантом для получения больших объемов энергии в начале колонизации Марса.

Ядерный реактор, способный производить 100 кВт электрической и 2000 кВт тепловой энергии круглосуточно в течение 10 лет, должен весить около 4000 килограммов – всего 4 тонны, – то есть он будет достаточно легким, чтобы привезти его с Земли. В противоположность этому, массив солнечных батарей, способный произвести то же количество электрической энергии при круглосуточной работе (и всего 1/20 часть тепловой энергии) в течение примерно того же срока службы, будет весить около 27000 килограммов и займет площадь в 6600 квадратных метров (около 2/3 футбольного поля). Если мы захотим получить то же количество тепловой  энергии (для изготовления кирпичей и производства воды), нам понадобится солнечная батарея, весящая 540 000 килограммов и занимающая 13 футбольных полей. Очевидно, на это уйдет слишком много материала, который придется везти с Земли. Преимущество ядерной энергетики для освоения Марса огромно – настолько велико, что нынешнюю неспособность американской политической элиты профинансировать эффективную программу исследований и разработки космических ядерных электростанций можно только осуждать в самых жестких выражениях. Если мы откажемся от атомной и ядерной энергетики, мы откажемся от целого мира.

Если энергоснабжение на начальных этапах освоения Марса должно быть основано на ядерных источниках, то после постройки полноценной базы условия, вероятно, изменятся. В какой-то момент должна появиться возможность построить солнечные энергетические системы из местного сырья. Если вы живете на Марсе, то добыть сотни тонн местных материалов будет гораздо легче, чем импортировать четыре тонны оборудования с Земли.

 


Дата добавления: 2018-09-22; просмотров: 227; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!