Мезомерный эффект в открытых сопряжённых системах
Рассмотрим пример пентадиен-2,4-аль. В данном случае карбонильную группу можно рассматривать как заместитель, появившийся в молекуле бутадиена-1,3 вместо атома водорода. Альдегидная группа и другие заместители, содержащие кратные связи (карбоксильная группа, сульфогруппа, нитрогруппа и др.), содержащие кратные связи, вступая в пи,пи-сопряжение с сопряжённой системой и оттягивая электронную плотность в свою сторону, снижают её в сопряжённой системе. Они проявляют отрицательный мезомерный эффект
(-М) - это электроноакцепторные (ЭА) заместители. Графически действие мезомерного эффекта изображают изогнутой стрелкой, начало которой показывает какие (пи- или р-электроны) смещаются, а конец – связь или атом, к которым смещается электронная плотность.
Наряду с отрицательным мезомерным эффектом заместитель также проявляет отрицательный индуктивный эффект (-I). Показываем действие индуктивного эффекта стрелочкой. Необходимо учитывать результирующее действие электронных эффектов заместителей. В данном случае их действие однонаправлено, согласованно и приводит к снижению электронной плотности в сопряжённой системе. Даём характеристику заместителя с учётом проявляемых эффектов: карбонильная группа (-М,-I) - электроноакцепторный заместитель.
Мезомерный эффект в замкнутых сопряжённых системах
А) Рассмотрим пример. В молекуле феноле гидроксогруппа – заместитель, появившийся в молекуле бензола вместо атома водорода. Гидроксогруппа и другие заместители, содержащие гетероатом с неподелённой парой электронов (аминогруппа, атом хлора и др.), поставляют пару электронов в сопряжённую систему, вступая с ней в р,пи-сопряжение и повышают в ней электронную плотность. Они проявляют (+М) положительный мезомерный эффект – это электронодонорные заместители (ЭД). Наряду с (+М) эффектом гидроксогруппа проявляет (-I) отрицательный индуктивный эффект.
|
|
Характеристика гидроксогруппы с учётом проявляемых ею эффектов – (+М и –I), при этом +М больше –I. Таким образом, гидроксогруппа являясь электронодонорным заместителем, повышает электронную плотность в сопряжённой системе. При этом в орто- и пара- положениях появляются реакционные центры, несущие частичные, отрицательные заряды – это нуклеофильные реакционные центры. Заместитель гидроксогруппа является ориентантом первого рода, т.е. направляет последующие заместители в орто- и пара-положения. Этим объясняется более высокая реакционная способность фенола по сравнению с бензолом.
Б) Бензойная кислота. Даём характеристику заместителя карбоксильной группы с учётом проявляемых эффектов: карбоксильная группа – электроноакцепторный заместитель (-М, -I), вступая в пи,пи-сопряжение, являясь ЭА приводит к перераспределению электронной плотности в ароматической системе. При этом в мета-положениях появляются нуклеофильные реакционные центры. Карбоксильная группа является ориентантом второго рода. Она направляет последующие заместители в мета-положения.
|
|
Вывод: В молекулах ряда органических соединений индуктивный и мезомерный эффекты заместителей, действуют одновременно, либо однонаправленно, согласованно, либо в противоположных направлениях. В основном мезомерный эффект значительно преобладает над индуктивным эффектом. У галогенов преобладающим является индуктивный эффект. Таким образом, учитывая перераспределение электронной плотности в молекулах органических соединений, в том числе биологически активных веществ, можно прогнозировать их свойства.
Лекция 2
Стереоизомерия. Кислотность и основность органических соединений
Продолжительность лекции: 2,5 часа
Цель и задачи: Ознакомить студентов с оптической изомерией – одним из видов стереоизомерии. Подчеркнуть студентам, что свойства веществ зависят от пространственного строения. Дать представление о протолитической теории, кислотности и основности органических соединений и влиянии на них различных факторов.
|
|
Мотивация: Акцентировать внимание будущих врачей на том, что пространственное строение органических веществ тесно связано с проявлением ими биологической активности, а также возможностью участия в биохимических процессах. Большинство органических соединений, находящихся в живом организме рассматриваются как слабые кислоты. Их биологическая активность находится в зависимости от степени диссоциации, на которую оказывает влияние реакция среды и др. факторы.
План лекции
1. Изомерия, Структурная изомерия, её виды. Пространственная изомерия, её виды, Оптическая изомерия (энантиомерия)
2. s- и p-диастереомерия. Примеры их проявления у биологически активных соединений.
3. Кислотно-основные свойства органических соединений
4. Факторы, влияющие на кислотные свойства органических соединений
Наглядность и технические средства: кодоскоп, микрофон
Содержание лекции
Изомеры – это вещества, имеющие одинаковый количественный и качественный состав, молекулярную массу, но отличающиеся химическим строением или расположением атомов в молекуле, пространстве.
|
|
Изомерия делится на 2 основных вида – структурную и пространственную (стереоизомерию).
Структурные изомеры отличаются друг от друга химическим строением. Структурная изомерия подразделяется на следующие виды:
1. Изомерия углеродной цепи (н-бутан, изобутан или2-метилпропан)
2. Изомерия положения функциональных групп: (пропанол-1, пропанол-2).
3. Изомерия положения кратных связей: (пентен-1, пентен-2).
4. Межклассовая изомерия. При этом одной эмпирической формуле С2Н5О отвечают а) этиловый спирт; б) диметиловый эфир
Стереоизомерия (пространственная изомерия) включает следующие виды:
1. Конформационная
2. Энантиомерия (оптическая изомерия)
3. Диастереомерия (s- и p-диастереомерия). Геометрическая изомерия.
Стереоизомеры – это изомеры, имеющие одинаковый состав и химическое строение молекулы, но различающиеся пространственным расположением атомов или групп атомов. Пространственное строение веществ изучает раздел химии и стереохимия. От пространственного строения соединений зависят их физические и химические свойства и биологическая активность.
Конформационная изомерия – это вид изомерии, при котором различие между изомерами (конформерами) обусловлено поворотом отдельных участков молекулы вокруг одинарных s-связей. (см. методическую разработку кафедры).
Энантиомерия возможна у любых органических соединений, имеющих ассиметрический атом углерода, соединённый с четырьмя различными атомами или группами атомов. Например, молекула молочной кислоты.
Молекулы веществ, содержащих ассиметрический атом углерода называют хиральным центром. Наши руки не содержат элементов симметрии и относятся друг к другу как предмет к своему зеркальному изображению.Они не могут быть совмещены в пространстве.
Хиральные молекулы также не содержат элементов симметрии и относятся друг к другу как предмет к своему зеркальному изображению и не могут быть полностью совмещены в пространстве.
Энантиомеры – стереоизомеры,молекулы которых относятся между собой как предмет и несовместимое с ним зеркальное изображение: Д (-) Молочная кислота и L (+) Молочная кислота. Для обозначения внешней конфигурации энантиомеров вводится понятие о Д и L-формах. Для энантиомеров с одним хиральным центром: Д-форма – энантиомер, в котором заместитель (–ОН группа и др.), соединённые с хиральным центром записываются справа по отношению к углеродной цепи, а L-форма – слева.
В данном случае в молочной кислоте –ОН группа – Д,L определяющий гидроксил.
Энантиомеры обладают оптической активностью. Они способны вращать плоскость поляризации света. Оптическая активность энантиомеров исследуется с помощью прибора – поляриметра, в котором луч света пройдя через специальную призму Николя колеблется только в одной плоскости, становится плоскополяризованным. Энантиомеры способны отклонять его либо влево, либо вправо. У энантиомеров угол вращения плоскости поляризации света одинаковый, но направление вращения противоположное. Один энантиомер – левовращающий, знак (-), а другой правовращающий, знак (+). У молочной кислоты Д (-); a=-2,6° и L (+); a=+2,6° при 22°С в 2,5 % водном растворе.
Знак вращения плоскости поляризации света не связан с принадлежностью к Д- или L-ряду. Он определяется экспериментально. Таким образом, энантиомеры обладая одинаковыми физическими и химическими свойствами, отличаются по оптическим свойствам. Они являются оптическими антиподами.
Смесь равных количеств энантиомеров называется рацематом. Он не обладает оптической активностью. Организм избирательно относится к энантиомерам. Утомление мышц при длительной работе обусловлено накоплением в них L (+) молочной кислоты.
Многие биологически важные соединения содержат в молекуле более одного центра хиральности. Количество стереоизомеров для них определяют по формуле: z=2n, z – количество стереоизомеров, n – число хиральных центров. Например, 2,3,4 – тригидроксибутаналь. Количество стереоизомеров равно 2 в степени 2 =4. Первая пара энантиомеров 1) Д – эритроза и 2) L-эритроза и вторая пара энантиомеров 3)Д-треоза и 4)L-треоза.
Энантиомеры каждой пары сходны между собой по физическим и химическим свойствам, но отличаются по оптическим свойствам, являются оптическими антиподами. 1 и 3; 1 и 4; 2 и 3; 2 и 4-ая пары стереоизомеров не являются энантиомерами, у них проявляется другой вид стереоизомерии – диастереоизомерия. Диастереоизомеры – это стереоизомеры, не являющиеся энантиомерами, т.е. «зеркальными» изомерами. У перечисленных выше пар стереоизомеров проявляется s-диастереометрия, т. к. заместители связаны с центром хиральности s-связями.
Если заместители находятся по одну сторону углеродной цепи, то такой стереоизомер называют эритро-формой, если по разные стороны, то трео-формой. У s-диастереомеров конфигурация одного хирального центра одинаковая, а другого противоположная. s-диастереомеры отличаются по физическим и химическим свойствам и не являются зеркальным изображением один другого. Понятие энантиомерии и s-диастереомерии взаимоисключающие. Если пара стереоизомеров не являются энантиомерами, то они будут s-диастереомеры.
p-диастереомеры – это стереоизомеры, отличающиеся друг от друга различным пространственным расположением одинаковых заместителей относительно плоскости p-связи. Например, бутандиовая кислота. Она образует 2 p -диастереомера (цис-p-диастереомер, малеиновая кислота)
и (транс-p-диастереомер, фумаровая кислота).
Молекулы бутендиовой кислоты не содержат центров хиральности. p-диастереомеры отличаются друг от друга по физическим и химическим свойствам, а также по физиологическому действию. Более устойчивыми являются транс-p-диастереомеры. Поэтому они более распространены в природе. Фумаровая кислота содержится как в растительных, так и животных организмах. В последних, она образуется как промежуточный продукт обмена углеводов в анаэробных условиях. Малеиновая кислота токсична, в природе не встречается, получается синтетическим путём.
Таким образом, пространственное строение органических веществ тесно связано с проявлением ими биологической активности, а также возможностью участия в биохимических процессах.
Дата добавления: 2018-09-22; просмотров: 567; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!