Базовые математические отношения 16 страница



В пространственной системе отсчета разница координат между двумя точками А и В представляет собой пространство, пройденное любым объектом, движущимся от А к В со скоростью отсчета. Если скорость отсчета меняется, соответственно меняется и расстояние, соответствующее разнице координат АВ. Это так, независимо от природы процесса, применяющегося для измерения расстояния. Например, можно предположить, что в случае использования чего-то, похожего на линейку, сравнивающего расстояние с расстоянием, измерение координатного расстояния не зависело бы от скорости отсчета. Но это не так, поскольку длина линейки, расстояние между двумя ее концами, связано со скоростью отсчета так же, как расстояние между любыми другими двумя точками. Если разница координат между А и В равна х, если скорость отсчета обладает обычной величиной равной единице, она становится , если скорость отсчета удваивается. Следовательно, если мы хотим представить движение с двойной скоростью света в одной из стандартных пространственных систем координат, допуская, что время движется как обычно, все расстояния, вовлеченные в эти движения, должны наполовину уменьшаться. Любая скорость больше единицы требует соответствующей модификации шкалы расстояний.

Существование движения со скоростями больше единицы не имеет прямого соответствия с известными явлениями повседневной жизни, но оно важно во всех менее доступных областях, тех, которые мы называем отдаленными регионами. Большинство следствий, которые относятся к сферам очень большого (к сферам астрономии), не имеют значения в связи с темами, обсуждаемыми на ранней стадии развития теории. Но общая природа эффектов, создающихся скоростями больше единицы, наиболее четко иллюстрируется теми астрономическими явлениями, в которых такие скорости могут наблюдаться в широком масштабе. Таким образом, краткое исследование типичных высокоскоростных астрономических объектов поможет прояснить факторы, вовлеченные в ситуацию высоких скоростей.

На предыдущих страницах мы исходили из теоретических допущений, что скорости больше скорости света могут создаваться процессами, включающими большие концентрации энергии, такими как взрывы. Последующее теоретическое рассмотрение (в томе 2) покажет, что, по существу, и звезды, и галактики подвергаются взрывам на определенных конкретных стадиях своего существования. Взрыв звезды обладает достаточной энергией для ускорения одних частей звездной массы до скоростей больше единицы, в то время как другие обретают скорости ниже этого уровня. Вещество с низкой скоростью выбрасывается в пространство в виде расширяющегося облака обломков, в которых частицы материи сохраняют обычные размеры, но разделены увеличивающимся количеством пустого пространства. Вещество с высокой скоростью тоже выбрасывается в виде расширяющегося облака, но из-за искажения шкалы системы отсчета в результате скоростей больше единицы, расстояния между частицами уменьшается, а не увеличивается. Чтобы подчеркнуть аналогию с облаком вещества, расширяющегося в пространстве, можно сказать, что частицы, расширяющиеся во времени, разделены увеличивающимся количеством пустого времени.

В каждом случае, расширение происходит от ситуации, существовавшей в момент взрыва, а не от какого-то случайного нулевого уровня. В традиционной пространственной системе отсчета звезда была изначально стационарной или двигалась с низкой скоростью. В движущейся системе отсчета, определяемой часами, она была стационарна и во времени. В результате взрыва материя, выброшенная на низких скоростях, движется наружу в пространстве и остается в исходных условиях во времени. Материя, выброшенная с высокими скоростями, движется наружу во времени, но остается в исходных условиях в пространстве. Поскольку мы наблюдаем только пространственный результат всех движений, мы видим лишь материал, движущийся с низкой скоростью в своей истинной форме – форме расширяющегося облака. Материю, движущуюся с высокой скоростью, мы видим как объект, остающийся стационарным в исходном пространственном положении. 

Из-за пустого пространства между частицами движущегося наружу продукта взрыва, диаметр расширяющегося облака значительно больше диаметра исходной звезды. Пустое пространство между частицами движущегося вовнутрь продукта взрыва соответствует обратному отношению и переворачивает результат. Наблюдаемая совокупность - белый карлик - тоже расширяющийся объект, но у него расширение во времени эквивалентно сжатию в пространстве. И как мы наблюдаем это в пространственном аспекте, его диаметр существенно меньше, чем диаметр исходной звезды. Следовательно, он предстает перед наблюдателем как объект очень высокой плотности.

Белый карлик – один из членов класса крайне компактных астрономических объектов, открытых за последние годы. Сегодня он бросает вызов базовым принципам традиционной физики. Одни из таких объектов – квазары - все еще пребывают без какого-либо разумного объяснения. Другие, включая белых карликов, связывались с современной физической теорией посредством выдуманных допущений. Но поскольку допущения, сделанные для объяснения каждого из таких объектов, не применимы к другим, астрономы обеспечены целым ассортиментом теорий для объяснения одного и того же явления – крайне высоких плотностей. Отсюда, значимо то, что объяснение высокой плотности белых карликов, выведенное из постулатов СТОВ, применимо ко всем другим плотным объектам. Как станет известно из детального обсуждения, все крайне плотные астрономические объекты являются продуктами взрыва, а высокая плотности во всех случаях возникает по одной и той же причине – движению со скоростями больше скорости света.

Это всего лишь беглое рассмотрение сложного явления, которое детально будет исследоваться позже. В то же время, это замечательная иллюстрация того, что явления Вселенной, предсказанные взаимообусловленностью, обнаруживаются во Вселенной всегда и везде, даже если взаимообусловленность включает такие странные концепции, как пустое время или движение с высокой скоростью у объектов, стационарных в пространстве.

Еще одна область, в которой неспособность традиционных пространственных систем отсчета представлять изменения положений во времени, кроме искажения пространственного представления, препятствует демонстрации физической ситуации в ее истинном свете, - область внутри единицы расстояния. Здесь, движение во времени происходит не за счет скорости больше единицы, а вследствие дискретной природы естественных единиц – единицы меньше единицы пространства (или времени) не существует. Чтобы проиллюстрировать вышесказанное, давайте рассмотрим атом А, движущийся к другому атому В. Согласно нынешним идеям, атом А будет продолжать двигаться в направлении АВ до тех пор, пока атомы или окружающие их силовые поля, если таковые имеются, пребывают в контакте. Однако постулаты СТОВ предписывают, что пространство существует только в виде единиц. Отсюда следует: когда атом А достигает точки Х, находящейся на расстоянии одной единицы от В, он больше не может приближаться к В в пространстве. Но он может менять положение во времени относительно положения во времени, занимаемого атомом В. И поскольку дальнейшее движение в пространстве невозможно, импульс атома побуждает движение продолжаться единственным открытым ему образом.

Пространственная система отсчета не способна представлять любое отклонение времени от нормальной скорости последовательности, следовательно, дополнительное движение во времени искажает положение в пространстве движущегося атома А так же, как и скорости больше единицы, которые мы рассматривали раньше. Когда разделение во времени между двумя атомами увеличилось до n единиц, пространство, оставшееся неизменным (с помощью непрерывных переворотов направления), эквивалент разделения в пространстве, количество, определяемое традиционными методами измерения, составляет 1/n единиц. Следовательно, в то время как атом А не может двигаться в положение меньше единицы в пространстве, отделяющем его от атома В, он может эквивалентно двигаться к ближнему положению с помощью движения наружу во времени. Благодаря движению во времени в области внутри единицы расстояния, для измерения длины можно воспользоваться областью или объемом физического объекта, которые являются частью естественной единицы, хотя в любом случае реальное одномерное, двумерное или трехмерное пространство не может быть меньше единицы.

В главе 6 говорилось, что атомы материальной совокупности, близко расположенные в пространстве, широко разделены во времени. Сейчас мы исследуем ситуацию, в которой изменение положения в пространственной системе координат возникает в результате разделения во времени. И нам хочется знать, чем отличаются разделения во времени. Объяснение таково: индивидуальные атомы совокупности, такой как газ, в которой атомы находятся на расстоянии больше одной единицы расстояния, разделены и разными расстояниями во времени, но все эти атомы пребывают в одной и той же стадии последовательности времени. Движение атомов удовлетворяет требованию точного представления в традиционных пространственных системах координат; то есть, сохраняет фиксированную последовательность времени, на которой основывается система отсчета. С другой стороны, движение во времени, имеющее место внутри единицы расстояния, включает отклонение от нормальной последовательности времени.

Для ясного рассмотрения ситуации пригодилась бы аналогия с пространством. Давайте рассмотрим индивидуальные единицы (звезды) галактики. Независимо от того, насколько широко разделены звезды, или как они движутся внутри галактики, они сохраняют свой статус составляющих галактики потому, что все они удаляются с одинаковой скоростью (внутренние движения незначимы по сравнению со скоростью удаления). Они пребывают в одной и той же стадии галактического удаления. Но если одна из звезд обретает пространственное движение, значительно изменяющее скорость удаления, она удаляется от галактики, либо временно, либо постоянно. Соответственно, положение этой звезды больше не может представляться на карте галактики, кроме как с помощью особой договоренности.

Разделения во времени, обсужденные в главе 6, аналогичны разделениям в пространстве внутри галактик. Как и галактики, совокупности материи, которые мы сейчас обсуждаем, сохраняют свои особенности потому, что их индивидуальные компоненты движутся во времени с одинаковыми скоростями. Но подобно тому, как индивидуальные звезды могут обретать пространственные скорости, вынуждающие их удаляться от галактик, индивидуальные атомы совокупностей материи могут обретать движения во времени, вынуждающие их отклоняться от нормального хода последовательности времени. Внутри единицы расстояния отклонение временное и достаточно ограниченное в размере. В белых карликах отклонения более интенсивны, но все еще временны. В томе 2 мы будем рассматривать явления, в которых величина отклонения достаточна для того, чтобы полностью выносить совокупности за рамки пространственных систем координат.

Коль скоро речь зашла о внутриатомном расстоянии, следует заметить, что оно не материально, будь то реальное разделение в пространстве или эквивалент такого разделения. Но факт, что на уровне границы единицы движение атомов меняется с движения в пространстве на движение во времени, обладает важными следствиями с других точек зрения. Например, пространственное направление АВ, в котором изначально движется атом А, сейчас не имеет никакого значения. Движение совершается внутри единицы расстояния, потому что движение во времени, заменившее предыдущее движение в пространстве, не обладает никаким пространственным направлением. Оно обладает тем, что мы выбрали называть направлением во времени, но направление во времени не имеет никакого отношения к направлению в пространстве уже существующего движения. Невзирая на то, каким может быть направление движения атома в пространстве до достижения единицы расстояния, направление движения во времени после того, как совершается переход к движению во времени, устанавливается чисто случайно.

Любой вид действия в области, где все движения являются движениями во времени, тоже подвергается значительным модификациям, когда достигает границы единицы и входит в область движения в пространстве. Например, связь между движением в пространстве и движением во времени скалярная, потому что связи между направлением в пространстве и направлением во времени не существует. Поэтому через границу может передаваться только одно измерение двумерного или трехмерного движения. Это положение оказывает важное влияние на некоторые явления, которые будут обсуждаться позже.

Другой значимый факт таков: на точке единицы действующее направление базовых скалярных движений - гравитации и последовательности естественной системы отсчета - переворачивается. Вне пространства единицы последовательность системы отсчета уносит все объекты наружу в пространстве, тем самым, удаляя их друг от друга. В пространстве единицы не направленно двигаться может только время. И поскольку увеличение во времени, если пространство остается постоянным, эквивалентно уменьшению в пространстве, последовательность системы отсчета в этой области, области времени, как мы ее называем, двигает все объекты в направлениях друг к другу. Гравитационное движение обязательно противостоит последовательности, отсюда, направление этого движения тоже переворачивается в точке единицы. В области вне единицы расстояния, гравитация - это движение вовнутрь, двигающее объекты друг к другу. В области времени она действует как движение наружу, отодвигая материальные объекты друг от друга.

На первый взгляд, может показаться нелогичным, что в разных областях одна и та же сила действует в противоположных направлениях. Но с естественной точки зрения, они не являются разными направлениями. Как подчеркивалось в главе 3, естественный уровень – единица, а не нуль. Следовательно, последовательность естественной системы отсчета всегда действует в одном и том же естественном направлении – от единицы. В области вне единицы расстояния расстояние от единицы является и расстоянием от нуля. В области внутри единицы расстояния расстояние от единицы является расстоянием к нулю. В обеих областях гравитация обладает одним и тем же естественным направлением - направлением к единству.

Именно переворот координатного направления в точке единицы позволяет атомам занимать положения равновесия и формировать твердые и жидкие совокупности. Такое равновесие не может устанавливаться там, где последовательность естественной системы отсчета движется вовне, потому что в этом случае влияние любого изменения в расстоянии между атомами, возникающее в результате несбалансированности сил, лишь усиливает несбалансированность. Если направленное вовнутрь гравитационное движение превалирует над последовательностью, направленной вовне, происходит результирующее движение вовнутрь, усиливающее гравитационное движение. И наоборот, если гравитационное движение меньше, результирующее итоговое движение - движение вовне, еще больше уменьшающее уже неадекватное гравитационное движение. В этих условиях не может быть равновесия.

В области времени влияние изменения относительного положения противоположно несбалансированной силе, вызывающей изменение. Если гравитационное движение (наружу в этой области) больше, то результирующее движение является движением вовне, уменьшающим гравитационное движение и сразу же приводящим его в равновесие с постоянным движением вовнутрь последовательности системы отсчета. Аналогично, если превалирует последовательность, результирующее движение - движение вовнутрь; оно усиливает гравитационное движение до тех пор, пока не достигается равновесие.

Во Вселенной Движения равновесие, которое обязательно должно устанавливаться между атомами материи внутри единицы расстояния, очевидно, соответствует наблюдаемому межатомному равновесию, превалирующему в твердых телах и с некоторыми модификациями в жидкостях. Это и есть объяснение сцепления в твердых телах и жидкостях, которое мы выводим из СТОВ, - первой исчерпывающей и абсолютно непротиворечивой теории этого явления, которая когда-либо была сформулирована. Сам факт, что она во всех отношениях намного превосходит принятую ныне электрическую теорию материи, не очень значим, ввиду того, что электрическая гипотеза определенно является одним из наименее успешных сегментов современной физической теории. Тем не менее, сравнение двух теорий должно быть интересным с точки зрения демонстрации того, насколько большего успеха реально достигает новая теоретическая система в конкретной физической области. Детальное сравнение будет представлено позже, после того, как будет проделана дальнейшая базовая работа.

Глава 9

Комбинации вращения

Одна из принципиальных трудностей, с которой сталкиваются при объяснении СТОВ или ее составляющих - общая тенденция части читателей или слушателей считать, что автор или лектор, кем бы он ни был, в действительности не имеет в виду того, что говорит. Ни одна из предыдущих теорий не является чисто теоретической; все они принимают определенную эмпирическую информацию как данный элемент в допущениях теории. Например, традиционная теория материи принимает существование материи как данность. Затем она допускает, что материя состоит из “элементарных частиц”, которые пытается отождествлять с наблюдаемыми материальными частицами. Далее, на основании этого допущения, учитывая эмпирическую информацию, введенную в теорию, она пытается объяснить наблюдаемую область структурных характеристик. Ввиду того, что все предыдущие крупномасштабные теории построены на этом паттерне, сложилось общее убеждение, что именно так должны строиться физические теории. Следовательно, считается, что при ссылке на факт, что СТОВ не пользуется никакими эмпирическими данными, это утверждение должно иметь какое-то иное значение, кроме буквального.

Теоретическое рассмотрение в предыдущих главах должно было бы выявить такое неверное понимание, поскольку рассматривается качественный аспект Вселенной. И хотя работа еще пребывает на ранних стадиях, с помощью дедукции из постулатов выведено достаточное количество основных характеристик физической Вселенной - излучения, материи, гравитации и так далее. И все это сделано без введения дальнейших допущений или эмпирической информации для демонстрации того, что чисто теоретическое, качественное рассмотрение, по сути, правдоподобно. Но полное рассмотрение теоретической Вселенной должно обязательно включать как количественные, так и качественные аспекты физических явлений.

Это еще один момент, когда способ развития теории ошибочно принимается за способ, как должно происходить развитие. Теоретические результаты эры Ньютона, так называемая классическая физика, могли выражаться в простых математических терминах. Но в последние годы выявились отклонения от классических законов, с которыми столкнулись в отдаленных областях, достигнутых с помощью наблюдения и эксперимента. Физики не могли работать с отклонениями, не прибегая к крайне сложным математическим моделям, наряду с концептуальными уловками, такими как “резиновая линейка” Эйнштейна или выдуманный фактор.

В свете положений, описанных в предыдущей главе, очевидно, что трудности возникают за счет неверного понимания базовой природы отдельных явлений. Но поскольку современные теоретики этого не осознали, они пришли к выводу, что истинные взаимоотношения Вселенной чрезвычайно сложны и не могут быть выражены ничем другим, кроме сложной математики.

Всеобщее признание такого взгляда на ситуацию привело большую часть научного сообщества, особенно физиков-теоретиков, к дальнейшему выводу, что любой подход к делу с помощью простой математики обязательно неверен и может быть отброшен без исследования. Многие из них делают шаг вперед и характеризуют такой подход как “не математический”. Конечно, такое отношение нелепо и неоправданно, но, тем не менее, распространено настолько, что представляет собой серьезное препятствие на пути полного признания достоинств любого простого математического подхода.


Дата добавления: 2018-09-20; просмотров: 312; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!