Базовые математические отношения 15 страница



В случае двух фотонов, рассматривавшемся в главе 7, величина 1/n является отношением 1/1 для обоих фотонов. Единица движения фотона Х включает одну единицу пространства и одну единицу времени. Время, входящее в эту единицу движения (время ) можно измерить с помощью регистрации на часах, которые являются временным эквивалентом линейки. Теми же часами можно воспользоваться и для измерения величины времени, вовлеченного в движение фотона Y (времени 0 Y). Но использование одной и той же временной “линейки” не означает, что временной интервал 0 Y, в котором движется Y, является тем же интервалом, в котором движется Х, интервалом . Их объединяет лишь применение одной и той же линейки для измерения пространств, пройденных Y и Х. Истина в следующем: в конце одной единицы времени, входящей в последовательность естественной системы отсчета (измеряемой часами), Х и Y разделяют две единицы общего времени (время и время 0 Y) и две единицы пространства (расстояние). Относительная скорость – это увеличение разделения в пространстве, две единицы, деленное на увеличение разделения во времени, две единицы, или 2/2 = 1.

Если объект с более низкой скоростью v заменяется одним из фотонов так, что разделение в пространстве в конце одной единицы часового времени равно 1 + v, разделение во времени тоже равно 1 + v, а относительная скорость равна (1 + v)/ (1 + v) = 1. Любой процесс, который измеряет истинную скорость, а не пространство, пройденное за данный интервал стандартного приборного времени (время последовательности естественной системы отсчета), приходит к единству со скоростью света, безотносительно системы отсчета.

Когда в уравнение движения вводятся правильные величины времени, необходимость в выдуманных факторах отпадает. Тогда измеренные различия координат и измеренная постоянная скорость света полностью совместимы, и нет необходимости лишать пространственные координаты их “метрического значения”. К сожалению, в настоящее время средства измерения общего времени недоступны, за исключением особых конкретных применений. Конечно, в будущем какой-то подходящий способ измерения будет найден, а пока понадобится продолжать пользоваться коррекцией к регистрации часов в тех областях, в которых это уместно. В таких обстоятельствах мы можем считать, что пользуемся корректирующими факторами вместо выдуманных. Больше нет необъяснимого расхождения, нуждающегося в выдумках. Сейчас мы обнаруживаем, что наши вычисления включают компонент времени, который невозможно измерить. В случае измерений, которые мы не можем выполнять, в определенных конкретных обстоятельствах, мы можем воспользоваться корректирующими факторами, компенсирующими разницу между приборным и общим временем.

Исчерпывающее объяснение выведения корректирующих факторов - уравнений Лоренца - доступно в научной литературе и не будет повторяться. Это соответствует общей политике, которой будет следовать эта работа. Как объяснялось в главе 1, большинство существующих физических теорий построено на эмпирических основах. СТОВ построена противоположным образом. В то время как теории, основанные на эмпирике, начинают с наблюдаемых деталей и работают над общими принципами, СТОВ начинает с ряда общих постулатов и работает с деталями. В какой-то момент каждое из ответвлений теоретического развития будет встречаться с соответствующим элементом эмпирической теории. Если это происходит в представляемой работе, и выявляется согласование, как в случае с уравнениями Лоренца, задача представления выполнена. Дублирование материала, уже доступного в деталях, было бы бессмысленно.

По мере развития теории большинство других прочно установленных отношений физической науки аналогично вписывается в новую теоретическую систему с небольшими модификациями или без таковых. Это происходит не потому, что весомость наблюдаемых свидетельств подтверждает эти отношения, не потому, что кто-то их одобрил, и не потому, что они изначально были одобрены научным миром. Это происходит потому, что выводы, выраженные этими отношениями, совпадают с выводами, полученными в результате развития новой теоретической системы. Когда такие отношения включаются в систему, они, естественно, становятся частью системы и могут использоваться так же, как и любая другая часть теоретической структуры.

Существование скоростей больше единицы (скорость света), скоростей, приводящих к изменению положения во времени, конфликтует с нынешним научным мнением, принимающим вывод Эйнштейна, что скорость света - это абсолютный предел, который не может быть превышен. Наше исследование показывает: в тот момент, когда Эйнштейну пришлось делать случайный выбор между альтернативами, он совершил неверный выбор, и ограничение скорости возникло в результате этой ошибки. По сути, предела не существует.

Подобно специальной теории относительности, теория, из которой выводится ограничение скорости, - это попытка дать объяснение эмпирическому наблюдению. Согласно второму закону движения Ньютона, который может выражаться как a = F/ m, если к постоянной массе прикладывается сила, она создает ускорение, которое тоже постоянно. Но серии экспериментов показали: если к частице, такой как электрон, прикладывается предположительно постоянная электрическая сила, и при этом создается очень высокая скорость, ускорение не остается постоянным, а уменьшается в степени, указывающей, что она достигла бы нуля при скорости света. Согласно экспериментальным результатам, истинное отношение не является законом Ньютона, a = F/ m, а a = - √ 1 – ( v/ c) 2 F/ m. В системе условных обозначений этой работы, пользующейся скорее естественными, чем случайными единицами измерений, скорость света, обозначаемая с в современной практике, равна единице, а переменная скорость (или быстрота) v выражается в терминах этой естественной единицы. На этой основе, эмпирически выведенное уравнение становится a = F/ m.

В экспериментальных данных ничего не говорится о значении термина 1 – v2 в этом выражении; уменьшается ли сила при высоких скоростях, увеличивается ли масса, или термин “быстрота” представляет собой влияние некоего фактора, не относящегося ни к силе, ни к массе. Эйнштейн, по-видимому, рассматривал только первые две альтернативы. И хотя восстановить паттерн его мышления трудно, кажется, он полагал, что действующая сила уменьшалась бы, только если уменьшалась бы величина электрических зарядов, созданных этой силой. Поскольку все электрические заряды одинаковы (насколько мы знаем), а первичные концентрации массы крайне переменчивы, в качестве альтернативы он выбрал переменную массу. В целях своей теории он предположил, что масса увеличивается со скоростью, указанной экспериментами. На этом основании при скорости света масса становится бесконечной.

Результаты, полученные из СТОВ, показывают, что Эйнштейн ошибся. Новая теоретически полученная информация (которая будет обсуждаться позже) раскрывает, что электрические заряды не могут создавать скорость больше единицы, и уменьшение ускорения на высоких скоростях, на самом деле, возникает за счет уменьшения силы, создаваемой зарядами, а не изменением величины либо массы, либо заряда.

Как объяснялось раньше, сила – это просто концепция, с помощью которой мы визуализируем результат противоположно направленных движений, как конфликт тенденций создавать движение, а не конфликт самых движений. Такой метод подхода помогает математической обработке темы и, безусловно, удобен. Но когда бы физическая ситуация ни представлялась некоей выведенной концепцией такого вида, всегда существует вероятность, что соответствие может быть не полным, и что результаты, полученные с помощью обозначенной концепции, могут быть ошибочными. Именно это и произошло в случае, который мы сейчас рассматриваем.

Если допущение, что сила, создающая ускорение массы, остается постоянной при отсутствии любых внешних влияний, рассматривается лишь с точки зрения концепции силы, это кажется абсолютно логичным. Представляется разумным, что тенденция создавать движение оставалась бы постоянной, пока не подверглась бы некоему виду изменения. Но когда мы рассматриваем ситуацию в ее истинном свете - как комбинацию движений, а не средство искусственного представления с помощью концепции силы - сразу же очевидно, что такой вещи, как постоянная сила, не существует. Любая сила должна уменьшаться, когда достигается скорость движения, из которого она возникает. Например, последовательность естественной системы отсчета – это движение с единицей скорости. Если сила (то есть, влияние) последовательности прикладывается для преодоления сопротивления движению (инерция массы), это сразу же сведет скорость массы к скорости самой последовательности – единице скорости. Но тенденция добавлять скорость объекту, уже движущемуся на высокой скорости, не эквивалентна тенденции передачи скорости телу, пребывающему в покое. При ограничивающем условии, когда объект уже движется с единицей скорости, сила за счет последовательности системы отсчета вообще не действует, а ее величина равна нулю.

Таким образом, полное действие любой силы достигается только тогда, когда сила действует на тело, пребывающее в покое, а действующий компонент, приложенный к движущемуся объекту, является функцией разницы между скоростью объекта и скоростью, проявляющейся как сила. Особая форма математической функции, а не просто 1 – v, связанная с некоторыми свойствам сложных движений, будет обсуждаться позже. Обычные земные скорости настолько малы, что соответствующим ослаблением действующей силы можно пренебречь, и на этих скоростях силы можно считать постоянными. Когда скорость движущегося объекта увеличивается, действующая сила уменьшается, приближаясь к нулю, если объект движется со скоростью, соответствующей приложенной силе – единице в случае последовательности естественной системы отсчета. Как мы обнаружим на более поздней стадии рассмотрения, электрический заряд является следствием движения с единицей скорости, как и гравитационное движение, и последовательность естественной системы отсчета. И он тоже оказывает нулевое силовое воздействие на объект, движущийся с единицей скорости.

В качестве аналогии можно рассмотреть контейнер, наполненный водой, который начинает быстро вращаться. Движение стенок контейнера воздействует силой на воду, стремящуюся придать жидкости вращательное движение. Под влиянием этой силы вода постепенно приобретает скорость вращения. Но когда скорость приближается к скорости контейнера, эффект “постоянной силы” уменьшается, и скорость контейнера становится пределом, превышать который скорость воды не может. Можно сказать, что сила исчезает. Но тот факт, что мы не можем еще больше ускорить жидкость этим способом, не мешает придать ей еще большую скорость с помощью другого способа. Ограничение касается лишь потенциала процесса, а не скорости, с которой вода может вращаться.

И в СТОВ, и в теории Эйнштейна математика уравнения движения, применяемая к явлению ускорения, остается одинаковой. Математически, не имеет значения, увеличивается ли масса на данную величину или действующая сила уменьшается на такую же величину. Действие на наблюдаемую величину – ускорение - идентично. Изобилие экспериментальных свидетельств, демонстрирующих правомочность этой математики, подтверждает результаты, выведенные из СТОВ точно в такой же степени, как они подтверждают теорию Эйнштейна. В любом случае эти свидетельства демонстрируют, что теория математически корректна.

Но математическая правомочность – лишь одно из требований, которым должна удовлетворять теория, чтобы быть корректным представлением физических фактов. Она должна быть правомочна и концептуально; то есть, значение, придаваемое математическим терминам и отношениям должно быть корректным. Одним из значимых аспектов теории Эйнштейна в связи с ускорением на высоких скоростях является то, что она ничего не объясняет; она просто выдвигает допущения. Эйнштейн предлагает нам авторитетное утверждение, что выражение для скорости включает увеличение массы, без любой попытки объяснения, почему масса увеличивается со скоростью; почему гипотетическое приращение массы не меняет структуру движущегося атома или частицы, как это делает любое другое приращение массы; почему термин “скорость” обладает именно такой конкретной математической формой; или почему вообще должно существовать какое-то ограничение скорости.

Конечно, отсутствие концептуальной основы - это общая характеристика базовых теорий современной физики, по выражению Эйнштейна “свободных изобретений человеческого ума”. Теория увеличения массы не является исключением. Но случайный характер теории резко контрастирует с полным объяснением, представляемым СТОВ. Новая система теории предлагает простые и логические ответы на все вышеприведенные вопросы и возникает в связи с объяснением, которое предлагает. Более того, ни одно из объяснений не выдумывается специально для этой цели. Все полностью выводится из изучения допущений о природе пространства и времени, составляющих базовые допущения новой теоретической системы.

И СТОВ, и теория Эйнштейна признают какое-то ограничение при единице скорости. Эйнштейн утверждает, что это предел величины скорости, поскольку на основе его теории, скорости, равной единице, масса достигает бесконечности, а ускорить бесконечную массу невозможно. С другой стороны, СТОВ утверждает, что ограничение обуславливается потенциалом процесса. Скорость выше единицы не может создаваться электромагнитными средствами. Это не мешает ускорению до более высоких скоростей с помощью других процессов, таких как внезапное высвобождение больших количеств энергии при взрывах. Согласно точке зрения новой теории, определенного предела на величины скорости не существует. Бесспорно, общая обратная взаимообусловленность пространства и времени требует, чтобы во Вселенной в целом скорости больше единицы имелись в таком же изобилии и охватывали такую же широкую область, что и скорости меньше единицы. Кажущееся преобладание низкоскоростных явлений – просто результат наблюдения вселенной из положения, находящегося на низкоскоростной стороне от нейтральной оси.

Одной из причин, почему допущение Эйнштейна, касающееся существования ограничения скорости, было принято с такой готовностью, является сомнительное отсутствие любого наблюдаемого свидетельства существования скоростей больше скорости света. Однако новая система теории указывает, что, на самом деле, это не отсутствие свидетельства. Трудность в том, что сейчас научное сообщество придерживается ошибочного мнения относительно природы изменения положения, вызываемого таким движением. Мы наблюдаем, что движение со скоростью меньше скорости света создает изменение положения в пространстве, и скорость изменения меняется в зависимости от скорости (или мгновенной скорости, если движение не линейно). Сейчас принимается на веру, что скорость больше скорости света приводила бы к еще большей скорости изменения положения в пространстве. И отсутствие любого ярко выраженного свидетельства о таких высоких скоростях изменения положения трактуется как доказательство существования предела скорости. Во Вселенной Движения приращение скорости выше единицы (скорости света) не создает изменения положения в пространстве. В такой Вселенной между пространством и временем существует полная симметрия. И поскольку единица скорости является нейтральным уровнем, рост скорости больше единицы создает изменение положения в трехмерном времени, а не в трехмерном пространстве.

Отсюда очевидно, что поиск “тахионов” – гипотетических частиц, движущихся с пространственной скоростью больше единицы, будет оставаться бесплодным. Скорости больше единицы не могут выявляться измерениями как скорость изменения координатных положений в пространстве. Их можно обнаружить лишь с помощью прямого измерения скорости или каких-то сопутствующих эффектов. Имеется много наблюдаемых феноменов требуемой природы, но их статус как свидетельств скоростей больше скорости света отвергается современными физиками на основании того, что они конфликтуют с допущением Эйнштейна об увеличении массы на высоких скоростях. Иными словами, от наблюдений требуют соответствия теории, а не чтобы теория удовлетворяла стандартной научной проверке – соответствию с наблюдением и экспериментом.

Современный подход к необычным красным смещениям квазаров – блестящий пример ненаучного искажения наблюдений в целях соответствия теории. Имеются адекватные основания полагать, что они являются доплеровскими смещениями, возникающими за счет скоростей, с которыми эти объекты удаляются от Земли. Вплоть до недавнего времени в этой связи не возникало никаких проблем. В вопросах природы красных смещений и существования линейного отношения между красным смещением и скоростью царило полное единодушие. Такое благодушие закончилось, когда были обнаружены квазары с красными смещениями, превышающими 1,00. На основании ранее принятой теории, красное смещение 1,00 указывает на снижение скорости до скорости света. Следовательно, вновь открытые красные смещения в диапазоне больше единицы представляют прямое измерение движений квазаров со скоростями больше скорости света.

Но современное научное сообщество не спешит оспаривать Эйнштейна, даже на основании прямого свидетельства; поэтому для сохранения ограничения скорости привлекается математика специальной теории относительности. Представляется, ситуация, что в связи с доплеровским смещением математических отношений специальной теории относительности не существуют, вообще не рассматривается. Как говорилось в главе 7, и как ясно объяснил в своих трудах сам Эйнштейн, уравнения Лоренца, выражающие эту математику, предназначены для примирения результатов прямых измерений скоростей (как в эксперименте Майкельсона-Морли) с измеряемыми изменениями координатного положения в пространственной системе отсчета. Как осознали все, включая Эйнштейна, именно прямое измерение скорости приводит к правильной числовой величине. (Конечно, Эйнштейн постулировал правомочность измерения скорости как основного принципа природы.) Подобно результату эксперимента Майкельсона-Морли, доплеровское смещение является прямым измерением, просто счетной операцией, оно никоим образом не связано с измерением пространственных координат. Поэтому применение математики относительности к измерениям красного смещения абсолютно неоправданно.

Ввиду того, что аспект “расширения времени” уравнений Лоренца применяется к некоторым другим явлениям, которые, кажется, никак не связаны с пространственными координатами, желательно предвосхитить дальнейшее развитие теории, обсуждаемое в главе 15. Оно покажет, что явления “расширения”, которые, казалось бы, включают только время (такие как срок жизни быстро движущихся неустойчивых частиц), на самом деле, являются следствиями изменения отношения между координатным пространственным положением (положением в фиксированной системе отсчета) и абсолютным пространственным положением (положением в естественно движущейся системе) объектов, занимающих эти положения. С другой стороны, эффект Доплера не зависит от пространственной системы отсчета.

Способ, как время проявляется в наблюдении, зависит от природы явления, в котором оно наблюдается. Большие красные смещения ограничены высокоскоростными астрономическими объектами. Детальное исследование эффекта движения во времени в доплеровском смещении будет перенесено в том 2, который будет касаться квазаров. Сейчас, мы будем рассматривать другие наблюдаемые эффекты движения во времени, которые не осознаются как таковые научным сообществом, - эффект искажения шкалы пространственной системы отсчета.

Как подчеркивалось в главе 3, традиционные пространственные системы отсчета не способны представлять больше одной переменной – пространства. И вследствие того, что в физической Вселенной имеются две основные переменные – пространство и время – мы можем пользоваться пространственными системами отсчета лишь на основании допущения, что скорость изменения времени остается постоянной. Далее, в начале этой главы, мы видели, что на всех скоростях, равных или меньше единицы, время, по существу, движется с постоянной скоростью, а все изменения происходят в пространстве. Из этого следует: если во всех приложениях правильно используются корректные величины общего времени, традиционные пространственные системы отсчета способны точно представлять все движения со скоростями 1/n. Но шкала пространственной системы координат связана со скоростью изменения времени, и точность координатного представления зависит от отсутствия любого изменения во времени, кроме непрерывной последовательности с нормальной скоростью, регистрируемой часами. На скоростях больше единицы сущностью, которая движется с фиксированной обычной скоростью, является пространство, а время переменно. Следовательно, превышение скорости больше единицы искажает пространственную систему координат.


Дата добавления: 2018-09-20; просмотров: 250; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!